
How to Program Computers
By Stephen C. Baxter

Table of Contents

BEGINNER LEVEL
What Is a Program?
How To Run a Program
Console and DOS32 Programs
Windows and Other GUI Programs
A Program

 Statements and Subroutines
Comments
Displaying Words and Numbers
Targeting Parts of the Screen
Variables
Variable Names

Storing Data in Memory
Variable Types
Declaring Variables
Counter Variables in for...do
Assigning Values to Variables
Initializing Variables
Calculations
Accumulations with Variables
The remainder Function
Precedence of Operations
Math Functions
Expressions
Entering Data with Prompt Functions
Sequences of Variables
Sequences Hold Arrays of Variables
Specifying Sequence Elements
Logical Relations in Decision-Making
Relational Operators and Functions

 Boolean Expressions
Compound Expressions
Using Logical Statements to Control Program Flow
Repeating Program Operations
The for...do Loop
The while Loop
Exiting Loops
Library Files
Simple Program Example

 Debugging
 Editors

INTERMEDIATE LEVEL
More on Sequences
Comparing Strings
Searching for Strings
Numbers and Strings
Changing Case
Changing Strings
Combining Strings
More Data Types
Testing for Type
Constants
Writing Subroutines
The type Routine
Passing Parameters
Files and I/O
Control Flow Structures

Scope

ADVANCED LEVEL
Databases
The EDS Database
File Servers
Linking to DLL's

 Advantage Database Server
 MySQL

Program Planning
 Multitasking Programming
 Translating Euphoria to C
 Web Programming with CGI
 The Software Business

EXAMPLES
BlackJack Program
Employees Program
Windows Programs

What Is A Program?

"A program is a sequence of instructions to the computer in a language both you and the
computer understand"

-- Microsoft Corporation

"The goal of any program is to perform some useful job, such as word processing,
bookkeeping or playing a game."

--Microsoft Corporation

"The process is part science, part art. The science comes from reading books about
programming; the art comes from writing your own programs and analyzing the
programs of others"

--Microsoft Corporation

Programs may be written in text editors, word processors, or Integrated Development
Environments (IDE). Text used to write programs is called "source code" or just "code"
for short, and Euphoria code is saved in files with .ex (DOS), .exw (Windows), or .exu
(Linux/Unix) file extensions. The characters and punctuation you find in text files are
used in program code files, though the meanings may be alien until you become familiar
with the language. Except for this and the file extension, these files resemble text files in
all other ways, and you should be able to read source code in any text editor. To run a
program, the text file that is the source code must be read by language software that can
translate or interpret the code you have written or otherwise spot the errors in your
writing.

Though your program may be 99% correct and free of typographical errors, a typical
language compiler will instantly find the missing parenthesis and point it out. It will not
miss any typographical errors. Once the typographical errors are eliminated, the program
may still fail due to errors in logic. Yes, the syntax may be perfect, but that does not
guarantee that the logic is flawless.

NOTE: Syntax means the rules and form of language.

You will be frustrated at first with the typographical errors that abound, but you will
quickly improve with practice. It helps if you are a typist, but it is not required.

Here is an example of the source code for a simple program:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 sequence list, sorted_list

 function merge_sort(sequence x)
 -- put x into ascending order using a recursive merge sort
     integer n, mid
     sequence merged, a, b

     n = length(x)
     if n = 0 or n = 1 then
         return x  -- trivial case
     end if

     mid = floor(n/2)
     a = merge_sort(x[1..mid])       -- sort first half of x
     b = merge_sort(x[mid+1..n])     -- sort second half of x

     -- merge the two sorted halves into one
     merged = {}
     while length(a) > 0 and length(b) > 0 do
         if compare(a[1], b[1]) < 0 then
             merged = append(merged, a[1])
             a = a[2..length(a)]
         else
             merged = append(merged, b[1])
             b = b[2..length(b)]
         end if
     end while
     return merged & a & b  -- merged data plus leftovers
 end function

 procedure print_sorted_list()
 -- generate sorted_list from list
     list = {9, 10, 3, 1, 4, 5, 8, 7, 6, 2}
     sorted_list = merge_sort(list)
     ? sorted_list
 end procedure

 print_sorted_list()     -- this command starts the program

The program begins execution at the last line, because it compiles or interprets from the 
top down.  In this case, the last line of code calls the main procedure, print_sorted_list(). 
Execution then proceeds through that procedure line by line until the procedure is 
finished.  The Euphoria language takes advantage of this to create a one-pass translation 
method that is very quick and efficient.  Those items on top are interpreted first followed 
by the lines that follow in order.



How to Run a Program
NOTE:  The console is a text-entry window, often called the DOS window, that has a 
command line where you run the computer by typing and reading text. 

The fact that you are reading this shows that you know how to run a program, but there 
are also other ways, and a programmer should know about them. Beginners often write 
programs for the console, so running a program can require invoking the program's name 
on the command line. For interpreted programs, it also involves invoking the Euphoria 
interpreter -- see below. 

In Euphoria, the source code is offered as a target file to the Euphoria interpreter, ex.exe 
for DOS32 and exw.exe for Windows. The interpreter reads, interprets, and executes the 
code with such speed that it seems nearly instantaneous. We will show why this is a 
benefit to programmers.  On a console command line, the command might resemble the 
following example: 

        ex myprog     

-- or --

   ex.exe myprog.ex

The console command line recognizes both forms. Basically, you are running the ex.exe 
program and offering the name of the source code "myprog" as a run time parameter. If 
you simply run ex.exe by typing ex only, the interpreter program will immediately ask for 
the source code to run with the question, "file name to execute?". If your Euphoria 
package is installed correctly, you can also click on source files with a mouse and 
Windows will run them with the appropriate interpreter, and you might even be able to 
run programs from the command line by typing the full program name alone, such as 
myprog.ex. For a large project such as a professional system installation, you can even 
use batch files with a .bat extension. The batch file may be simple or complex. For 
instance, it may contain "ex myprog". Such a batch file would be called myprog.bat. 

Using the Euphoria binder (which is like a compiler), you can convert your source code 
to a stand-alone .exe file, like most programs. Such programs will run simply by invoking 
them as any other program you have ever used, and the files can be distributed without 
also distributing the interpreter, but interpreted programs are the best kind while you are 
in the development stage. They make development easier and faster. The ability to run in 
interpreted mode is one of the advantages that Euphoria has over most other 
programming languages

With other languages, you must go through several steps to get a program to run just to 
test it as you write it.  With Euphoria, you can run it immediately after making changes. 



You can quickly test any and all changes as you make them because it has an interpreter 
(ex.exe or exw.exe) to work with.



Console or DOS Programming

Character-based programming is different from Graphical User Interface (GUI) systems 
like Windows or Macintosh. Console programs were the norm years ago, and they are 
still very common in business applications. Typically, the entire screen background is 
black while the letters and numerals are white. 

Beginners do best when they begin writing console programs which are less fancy and 
which omit many complications.  In Windows, a console can be run as one of the 
windows on the desktop.  Windows Vista will not allow full screen console, so a console 
window is necessary.

MSDOS, which was the most popular operating system before Windows, is a console 
system, and with Euphoria, you can write DOS32 programs now. Also,Windows allows 
console programs which can be written with Euphoria. Certain fancy aspects can be 
added to console programs such as colors and symbols When you progress to that stage, 
but console programs allow absolute beginners to start with the pure basics. 





Windows and GUI Programs 

Windows is the most popular GUI operating system in the world, and more Windows 
programs are sold than any other. Compared to console or DOS32 programs, Windows 
and other GUI programs have much extra complexity. There are graphic interface details 
and many mouse events to deal with.



A Program

Consider the following:
     puts(1, "Hello, World!")

That is a simple one-line program.  It is a statement with a print command to print "Hello, 
World!" to the screen like this:
          Hello, World!
 The command puts() takes two parameters, the printing destination, 1 means the screen, 
and the characters to print surrounded by quotes, Hello, World!.  



Statements and Routines 

A program starts as a text file with lines of text. Each line may be a single command to 
the computer, or a command may span several lines. 

Some commands are built-in subroutines or subprograms that end with parentheses. 
Some subroutines use empty parentheses and some do not. 

Some commands are block commands that are meant to spread over two or more lines of 
text. Block commands have a beginning part and an ending part and allow blank lines in 
the middle. The if..then..end if is a good example. The if word marks the beginning, and 
the end if phrase marks the end. 

    if age < 18 then
       puts(1, "Beat it, kid!\n")
    else
       puts(1, "What'll ya have?\n")
    end if

The for..do statement is another block statement. It allows a certain number of repetitions 
based upon the desire of the programmer and the design of the statement. All internal 
statements contained between for and end for are repeated a certain number of times. 
The for statement counts each repetition and updates the count in a counting variable. 

    for count = 1 to 10 do
       printf(1, "This is number %d\n", count)
    end for

The above statement is a block statement bounded by for...do at the top and end for at 
the bottom. It basically counts to ten. On each count, the count variable is increased by 
one. On each count, the count is shown by printing the statement contained within the for 
statement. 

  for count = 1 to 10 do -- 'for' and 'to' and 'do' are the built-   
                              –-in commands
        ...

   for count = 1 to 10  -- '1' and '10' are the selected upper and 
                           --lower bounds
       ...

   for count = 1 to 10 do   -- count is the loop variable automatically 
                            --declared



The clear_screen() procedure is a built-in routine that, well, clears the screen. It is a 
routine, so it contains parentheses, but it is a procedure because it only performs an 
action, it does not return a value. 

       clear_screen()       

The sqrt() routine is a function that takes one parameter and returns a value. Its purpose 
is to perform the square root function on number values so the parameter is a number to 
be evaluated and the return value is a number that is the value of the square root of the 
parameter number. Since functions must be used within a statement, we put this routine 
inside a print() statement so we can see the result on screen. 

    print(1, sqrt(4))

...and the result looks like this 

     2

In the previous example, 4 was the parameter placed in the parentheses and 2 was the 
value returned from the function (which print() then printed to screen). 2 is, in fact, the 
square root of 4. Since, sqrt() is a function that returns a value, we used another routine, 
a procedure, to create a complete statement that could stand alone on one line. 

Procedures can stand alone on a line as if they are a simple step in the program, but 
functions must be used in a statement as if they were a variable.  To see the sqrt() 
function in action, we put it in a statement in order to print its result.



Comments 

Comments are an important part of programming that explain the program step-by-step 
and remind the programmer why the program was written. It is a common experience that 
the programmer will forget in as little as a week why the code was written the way it was. 
Comments document the process and help the programmer recall the purpose and the 
process.  Comments begin with double hyphen and continue to the end of the line. Any 
line of code can be disabled, 'commented out', for experimental purposes by placing 
double hyphens at the beginning of the line. This is a useful debugging technique.   The 
interpreter will ignore comments, but you should not.

    puts(1, "Hello, World\n") -- this part is a comment
                        



Displaying Words and Numbers on 
Screen 

The print() statement is a way to show numbers and numeric calculations on screen, but 
the ? operator is shorthand for the print() statement. Simply use the print() statement or 
its shorthand equivalent followed by the number or numeric expression you wish to print 
to screen. 

        ? (12 + 8) / 4 + 1
             -- or --
    print(1, (12 + 8) / 4 + 1)

The output should appear as follows: 

         3.5

Use the clear_screen() command to clear the screen. 

The puts() statement is a way to print characters and strings on screen. This statement is 
a function that requires two parameters. Multiple parameters are always separated by 
commas. The first parameter is a number code, 1 represents the screen. The second 
parameter is the character or string to print. Strings and characters must be surrounded by 
quotes. Any string may include the newline '\n' character at the end within the quotation 
marks.  The "\n" character is said to be an imbedded command because it causes an 
action, moving to a new line, but it is not visible in the final printing.

     puts(1, "This statement is a procedure.\n")

The print() (?) statement cannot be used for strings, and the puts() statement cannot be 
used for math, but numbers as characters within quotation marks are allowed. 

     puts(1, "236 Elm Street\n")

The printf() statement is more complicated but more flexible; it can be used for numbers 
and strings and exact formatting. Use printf() whenever you mix math expressions with 
string expressions. Use printf() when you are printing several lines in columns or tables. 
The printf() statement requires three parameters (all separated by commas). The first is a 
number that is a code for destination, 1 represents the screen. The second parameter is a 
formatting string that may contain symbols. The symbols correspond to the items to print. 
They represent the data type of the item(s) to print. The third parameter is an object that 
may be an integer, an atom or a sequence. A sequence is used when multiple items are 
being printed in one statement. The number of symbols in the second parameter must 



match the number of elements 

    number = 36
    printf(1, "The sum of %f and 4 is %f", {number, number + 4})
    printf(1, "The square of  %f  is %f ", {number, number * number})

NOTE: Sequences are surrounded by curly braces { } not parentheses. 

The %f symbol represents floating-point data with the conventional decimal expression. 
The symbol is a marker imbedded in a string to show where the data goes and what type 
it is .  If you run the previous three lines of code, the output should look like the 
following: 

    The sum of 36 and 4 is 40
    The square of 36 is 1296

The calculations were combined with the formatting of the strings and the printing of the 
formatted results.

The second parameter, the formatting string, may contain spaces or tabs to place the 
printed data at precise locations. This is useful for multiple executions that creates a 
tabular format. 

    printf(1, "Sum of 5.29 and          %f          is         %f\n", 
{2.79, 5.29 + 2.79})

The output should appear as follows: 

     Sum of 5.29 and          2.79         is         8.08           

Note that the newline character \n was used at the end of the format string to ensure that 
any following printing would occur on a new line. 

The newline character is very important and requires some consideration. 

    puts(1, "How old are you?\n")
    ? 41

The output should appear as follows: 

    How old are you?
     41

If you type and run the clear_screen() statement and then type again: 

   puts(1, "How old are you?")
   ? 41

The output should look like the following: 

   How old are you? 41



NOTE: Use the symbol "%f" for atom variables and "%s" for sequence variables used as 
strings with the format string. 



Targeting Parts of the Screen 

The text screen is made of 25 lines with 80 columns. A single sentence on one line may 
have 80 characters in it. Each letter in a normal sentence represents a screen column. 
One normal sentence of less than 80 characters only occupies one row of the screen. 
With a fresh screen that is blank, DOS will start printing on the first character of the first 
line unless instructed otherwise. This is the very top left corner. If the line exceeds 80 
characters, DOS will wrap (normally) around to the next line where the line can be 
finished. 

If the line is less than 80 characters and it is followed by an embedded newline 
command ("\n"), then DOS will ensure that any more printing begins on the line to 
follow. On the 25th line, DOS will also ensure  that the screen scrolls down by one line. 
A new line is formed and the first line disappears.  This is called scrolling. 

You can override these automatic features of the operating system and place the cursor on 
any character position you want (25 X 80 = 2000). The position() statement will accept 
two parameters (numbers) which correspond with row and column. The command, 
position(2,34) places the cursor on the second line at the 34th character, and that is where 
printing will begin. 

If a row exceeds 25 or column exceeds 80 it will cause a fatal error because you have 
referred to an area off the screen.  A fatal error will stop program execution immediately; 
it will interrupt everything abruptly and unexpectedly.



Variables 
Variables are placeholders in memory for storing data.  Memory locations have 
addresses, but you do not need to remember the addresses because you will use variables 
instead.  You just remember the name of the variable, a name you have chosen.  Euphoria 
will associate the variable with a memory address on your behalf.

Data may come from typing at the keyboard, or it may come from opening a file on the 
disk drive, or it may come from a network communication.  Data that is not stored is lost. 
Variables can hold it temporarily while the computer is on, but to save it longer, you need 
to save to the disk.



Variable Names 
Choose variable names as you like, but there are a few rules. Numbers may be included 
anywhere in the variable name except the beginning. Punctuation symbols are not 
allowed except for the underline, '_', character. Choose names that are helpful and 
suggestive of the contents and purpose. The Euphoria language reserves certain words 
that may not be used as the name of a variable. Those reserved words are: 
                                                        
                                                                Reserved Words

             and        exit       or         with      elsif
             end        not        while      else      if
             include    type       do         global    then
             to         constant   function   return    xor
             by         for        procedure  without

The names or identifiers are case-sensitive, that is, capitalization matters. The variable 
hour and the variable Hour are not the same. The identifier exit is a reserved word and 
may not be used for the name of a variable, but EXIT is allowed because capitalization 
makes a big difference. 

Older programmers by use the form first_name, for example, as a variable to hold the 
first name of an entrant, but it is more common today to use "Camel Capitalization".  An 
internal capital letter or two eliminates the need for an "_" underline character, for 
example: firstName.



Storing Data in Memory 

Memory is divided into storage locations and each location has an address. The address is 
all that is needed to find the location and any stored contents. Each bit of information has 
its storage locations and addresses. 

Using variables means the programmer does not need to remember any addresses. 
Euphoria associates the variable to a storage location and address whenever you declare a 
variable. You can use the variable name instead of memory addresses.  

If you want the information 'remembered' after the computer is turned off, you must save 
it to disk or some other permanent storage by saving the variable contents to disk 
contents.  Like computer memory, disk memory is a series of bytes with an adressable 
location.



Variable Types

For now, you may think of data as two types, single values and multiple values. We will 
call variables designed to hold single (scalar) values atoms and variables designed to hold 
multiple (group) values sequences. As you look at the information around you, you can 
see that there are mathematical calculations and printable characters. To the computer, 
even the characters are coded as numbers, such as the ASCII code. The ASCII code 
offers 256 characters coded with the numbers 0 - 255. When the computer encounters 
numbers in that range and is told they are characters, then the computer will translate 
them instantly to their ASCII equivalents. 

               E   u   p   h   o   r   i   a    -- alphabet letters
              69  117 112 104 111 114 105  97   -- ASCII codes for each letter

Since phrases and sentences are strings of characters (including the space character and 
punctuation), they are stored in sequence variables as strings. Anything that is a string, a 
list, or a series is stored as a sequence. All other individual values may be stored as an 
atom. 

   105586.93                         -- stored in an atom
   "And another thing..."            -- stored in a sequence
   3                                 -- stored as an atom
   {3.45, 56, 0.9, 34, 11022}        -- stored as a sequence
   {4, "four", 5, "five", 6, "six"}  -- stored as a sequence

A sequence stores a series or list of items.  An atom stores only one, usually a number 
value.  Since characters are coded as numbers, and atom can store a single character if it 
is surrounded by single quotes.
    
    atom lilbit

    lilbit = 'a'



Declaring Variables 

Before a variable may be used, it must be declared with a statement situated above the 
area where the variable will be used.  If the variable is to be an atom named big_num 
then it is declared as follows: 

   atom big_num

If the variable is to be a sequence named last_name, then is declared as follows: 

   sequence last_name

You are free to declare several of the same kind of variable on a single line if you will 
separate each pair by a comma. 

   atom big_num, small_num, calc, diameter, stretch, finalTotal
   sequence last_name, short_list



Counter Variables in for...do Loops 

The variable used as a counting variable in a for..do loop is a special variable in the 
Euphoria language. You do not need to declare the counting variable -- in fact you must  
not declare such variables. If you attempt to use a declared variable as a counting variable 
in the for..do loop, you will generate an error and an error report. If you attempt to use 
the counter variable outside its loop after the loop is finished, you will generate an error 
and stop the program.  If you need to use the accumulated value of the counter outside the 
loop, you must assign its value to a declared variable and use the declared variable as 
such.

   for i = 1 to 30 do
      for j = 1 to 23 do
        puts(1, '0')
      end for
   end for

In the above code, i and j are counting variables. 



Assigning Values to Variables 

A variable gets it value through an "assignment" statement. There are three parts to an 
assignment statement: the variable that receives a new value (on the left extreme), an 
equal sign (=), and the number, string, or calculation whose value the variable takes on 
(to the right). Here are some valid examples: 

  customer_age = 41
  my_name = "Shirley"
  result = val_slate + ps_num + val_lower
  full_name = first_name & ' ' & last_name
  ver = (45 * 678) + (45/56)

If you break the rule, if you try to assign a sequential value to an atom variable, you will 
cause an error halting the program and receive an error message.

   type_check failure, customer_age is {3, 4,87, 54, 2}



Initializing Variables 

The first time you assign a value to a new variable it is called initialization of the 
variable. No variable may be used in an expression until it is first initialized. Failure to 
obey this rule will generate an error and error report. You may initialize number variables 
to zero and sequence variables to "" or {} (empty sequence) if you like. 

       myVar = 0.0

REMEMBER: the initialization of a variable is merely its very first assignment.



Calculations

In Euphoria, addition, subtraction, multiplication, and division are represented by +, -, * 
(the asterisk), and / (the slash), respectively. Exponential expressions are accomplished 
by the power() function. 

           Operation               Result   
     ==========              =======
           ? 2 + 3                  5                       
           ? 2 - 3                 -1
           ? 2 * 3                  6
           ? 2 / 3                  .666666667
           ? power(2, 3)            8           -- "two to the third"

 



Accumulation with Variables 

If a variable is initialized to some empty value, it may still accumulate through a series of 
steps into a variable of increased value. The example follows: 

   atom accum

    accum = 0            -- initialization to zero
    accum = accum + 3    -- accum now equals 3
  accum = accum + 10   -- accum now equals 13

   -- let us start again

   accum = 1 
   accum = accum * 10  -- accum equals 10
   accum = accum * 10  -- accum equals 100

In Euphoria, there is a shorthand version for each of these operations. 

    accum = accum + 1 
       -- or --
    accum += 1       -- special shorthand operator

    accum = accum * 20
       -- or --
  accum *= 20       -- special shorthand operator

    -- Also  --
   
    accum /= 1
    accum -= 1
    



The remainder() Function 

The remainder() function allows a number to be divided by another with only the 
remainder as a result. This is often called a modulus mathematicians. 

   ? remainder(7, 2)   -- 1 is the result displayed
   ? remainder(6, 3)   -- 0 is the result displayed



Precedence of Operations

Euphoria evaluates mathematical expressions from left to right, following the rules of 
algebraic precedence: exponentiation is performed first, then multiplication and division, 
then addition and subtraction. The following example program illustrates algebraic 
precedence: 

Parentheses can confirm or override the normal precedence. 

  ? 2 * 3 + 2 / 3

The output is: 
   
   6.6666667
  

   ? (2 * 3) + (2 / 3)

The output is: 

   6.6666667

  ? 2 * (3 + 2) / 3

The output is: 

  3.333334

Use parentheses whenever you want to be sure what the precedence is.  The first 
expression in parentheses to the left will be evaluated first, then all other parentheses 
moving to the right, then whatever remains from left to right.



Math Functions 

Along with general math operations like addition, subtraction, multiplication, and 
division, there are advanced math functions like those available on scientific calculators. 
Generally, they require a number or expression in the parentheses and an assignment to 
the variable that will hold the final value. These functions are the secret to advanced or 
highly technical programs giving the computer the power for precise number crunching. 

NOTE: All general purpose programming languages have a built-in calculator similar to 
this.

sqrt()           - calculate the square root of an object     
rand()           - generate random numbers
sin()            - calculate sin of an angle
arcsin()         - calculate the angle with a given sin
cos()            - calculate the cosine of an angle
arccos()         - calculate the angle of a given cosine
tan()            - calculate the tangent of an angle
arctan()         - calculate the arc tangent of a number
log()            - calculate the natural logarithm
floor()          - round down to the nearest integer
remainder()      - calculate the remainder when two are divided
power()          - calculate a number raised to a power
PI               - precise value of PI



Expressions 

An expression is like a formula. Any combination of numbers, strings, variables, 
functions, and operators that can be evaluated is an expression. As an example, 2 + 2 is a 
simple expression that evaluates to 4. Euphoria will evaluate expressions before moving 
on. 

Logical comparison expressions are evaluated to either true (1) or false (0). 

    num = 2 + 4

In the above example, Euphoria will evaluate the expression 2 + 4 before it is assigned. 
Only the evaluation's result is assigned to the variable on the left.   The entire expression, 
num = 2 + 4, can be evaluated as either true (1) or false (0).

    ? num = 6

The output is:

    1 



Entering Data with the Prompting 
Functions 

NOTE:To add the prompting functions to the Euphoria language, you must include their  
library file, get.e. using an include get.e statement near the top of your program. 

NOTE:  A string in programming is a series of printable characters, usually a sentence 
or phrase.

The prompt_string() function displays a prompt (an instruction to the end user), then 
waits for the user to enter some value. The command is a function that assigns the value 
inputted to a variable. It is usually used in an assignment statement. The prompt_string() 
function expects a string, and a string is assigned to the waiting variable. You can ask for 
numbers, but characters of the numerical type are returned when you use the 
prompt_string() function for retrieving numbers. You can print character numerals, but 
you cannot calculate with them.
    
    yourname = prompt_string("What is your name?")
    puts(1, yourname & '\n')

The prompt_number() function displays a prompt string, then waits for the user to enter 
some value, a numerical value. The prompt_number() statement is used to gather 
mathematical data from the user. Unlike the prompt_string(), the prompt_number() 
function requires two parameters. The first parameter is the usual prompt string, the 
second parameter is a sequence. The sequence allows two numbers separated by a 
comma, or it may be left empty. The first number is a lower limit and the second number 
is an upper limit. If the number input from the user is outside these limits, it is rejected. If 
the numbers are 2 and 4, then the error statement displayed when the number 5 is entered 
is "A number from 2 to 4 was expected -- try again". 

  yourage = prompt_number("What is your age?", {1, 120})
  printf(1, %d, yourage)

In this above example, only a whole number between 1 and 120, inclusive, is allowed. 
Any other input is rejected with a message to try again.

The sequence as the second parameter may be an empty ({}) sequence. In this case, no 
limits are imposed on the input by the statement. 

The prompt_number() function cannot accept a string value, so an error is reported if a 
string is entered, "A number was expected -- try again".  This enforces input validation 
which is an important duty of many programs; validation eliminates many problems at 
the source, and that is much better than having to go searching for them after the fact in 



an attempt to repair a broken program.  The problem that was eliminated by validation 
was a potential bug (any program flaw).

Remember: to include either prompt_string() or the prompt_number() functions you 
must include the library they belong to, get.e, by placing the statement: 

    include get.e

near the top of the file. 
 
    your_address = prompt_string("What is your address?")
 
In the above line, a street address is expected in the sequence variable your_address 
because such data is stored as a string despite the fact that numbers are included. 
Numbers such as addresses which are characters signifying something are stored in 
strings as a rule. Such numerals are not for mathematics and cannot be used in math 
operations as long as they are characters in a string. 

NOTE:  To transform character numerals to mathematical numbers, see the value() 
command.



Sequences of Variables 

If you wanted to keep track of the number of visitors to your website for every day in 
May, you could use 31 atom variables, named may1, may2, may3, and so on through 
may31. 

However, every separate variable needs to be handled individually. If you are trying to 
prompt for every one of 31 individual variables, you need 31 statements. 

   may1 = prompt_number("How many visitors for May 1?")
      -
      -
      -
      -
   may31 = prompt_number("How many visitors for May 31?")

A similar problem arises when you need to print the thirty-one values. 

The solution is to give the entire range a single name with a series of subscripts. Each 
value is distinguished by its number and each can be handled individually but the entire 
array can be handled as a group using a single statement. 

May[1]  May[2]  May[3]   May[4]   May[5] ....

The ability to handle related data in a single structure (a sequence or array) is a powerful 
advantage to computer programming.  If one million customers for Ajax Widgets, Inc. 
are all stored in a single sequence, each with its own unique subscript (1-1000000), then 
each customer's information can be visited with all others in the same operation with a 
loop that loops 1000000 times for 1000000 customers.  That is a lot of power in a few 
lines of code.



Sequences Hold Arrays of Variables 

Arrays are data types found in every programming language, but in Euphoria they are 
implemented as sequences. Sequences can be arrays, but they do much more than that. 
An array is a list, a series, or sequence of values. In most languages, all elements of an 
array must be the same data type, but in Euphoria, each element may be a different data 
type. In fact, each element may be another sequence. 

Arrays offer many advantages. They are an efficient way to use large amounts of memory 
to control large amounts of data. By using loops, you can handle thousands of variables 
with a single loop statement thanks to array variables. 

Arrays are used when you want to sort a series of numbers or a series of names. They are 
used whenever you need many variables with a common name (customers, for instance). 

If an array named list has 100 elements in it, list[1] is the first element, and list[100] is 
the last element. Despite their connection to one another, each element may be used as a 
completely separate variable as long as the correct subscript is identified.   In some cases, 
you will refer to the whole sequence as a sequence variable and then you will not use any 
index at all.

All you need to declare an array is to declare a sequence variable. Any sequence variable 
may be used as either a string or an array or perhaps some other data structure, but if you 
want to, you can size or dimension an array. If you wanted an array of 12 elements to 
symbolize the months of a year, you can dimension the sequence variable month like so: 

  sequence month

  month = {0,0,0,0,0,0,0,0,0,0,0,0}
 
  -- or --
  
  month = {{},{},{},{},{},{},{},{},{},{},{},{}}

  -- or --

  month = repeat(0,12)

  -- or --
  
  month = repeat({},12)

You can rearrange the members of a sequence by swapping their values through 



assignment statements.  This is how a list is sorted in order, and it is how a deck of 52 
cards, as in the game 21.ex, is shuffled.  Shuffling is the opposite of sorting.



Specifying Sequence Elements

Since a sequence variable may have a few elements or a few thousand, it is important to 
measure a sequence from time to time. The length() function will tell you the number of 
elements of any sequence. The notation of subscripts allows mathematical manipulation 
of subscripts. 

    plot[234+num_points] = 0
    pts[4] = plot[length(plot) - 4]

You may specify a range within the full range of elements too. The following example 
specifies the range of elements 5 through 12. This is called slicing. 

     oth_seq = grp_a[5..12]

The elements 5 through 12 is 8 elements long.  The new sequence, oth_seq is now 8 
elements (subscripts 1 through 8) long.  What was grp_a[5] is now oth_seq[1]; what was 
grp_a[12] is now oth_seq[8].  They were only copied, however.  The entire sequence, 
grp_a, still exits.

There is a shorthand symbol ($) for the length of a sequence. It literally means, "the 
length of this sequence". 

     plot[$ - 1]

This expression specifies the next-to-last element in the sequence, plot. 

Remember: Each element in a sequence is a variable in itself.  That variable may be an 
atom or yet another sequence, or even a sequence of sequences.  Some statements only 
work on sequences; some only on atoms.  Sequence statements will accept the sequence 
as a whole while a single element, if it is an atom, can be passed to an atom-only 
operation.



Logical Relations Used in Decision-
Making 

Euphoria can decide whether two numbers or two strings or two sequences are the same 
or different. On the basis of such a decision, program statements may be executed or 
repeated.  Computers are not really intelligent, they do not actually think the way humans 
do, but they often seem to because of the ability to observe and make decisions based 
upon the observed conditions.  This is logical decision-making, and your programs can 
do it.



Relational Operators and Functions 

Strings are compared with comparison routines like equal() or compare(), but numbers 
and mathematical expressions can be compared with the routines above or with 
"relational operators". 

  Relational Operator           Meaning
  ===================           =======
  =                             Equal to
  !=                            Not equal to
  >                             Greater than
  <                             Less than
  >=                            Greater than or equal to
  <=                            Less than or equal to

Here are some examples of how statements are evaluated: 

  Relational Operator           Meaning
  ===================           =======
  7 = 35                        False
  7 != 6                        True
  6 > 1                         True
  4 < 3                         False
  7 <= 7                        True
  8 >= 7                        True
  
Here are some examples for comparing strings (they use the equal() and compare() 
Euphoria functions): 

  Relational Operator            Output (meaning)
  ===================            =======
  not equal("John", "Paul")      1 (true)
 compare("John",  "Paul")       -1 (less than)
 equal("Y", "Y")                1 (true)
 equal("Y", "y")                0 (false)
 compare("miss", "misty")       -1 (less than)
 compare("mis", "mis")           0 (equal to)
 compare("misty", "miss")        1 (greater than)

The equal() function returns either 1 for true or 0 for false, but the compare() function 
returns 0 for equal, 1 for greater than, and -1 for less than. The answer is 1 when the first 
parameter is greater than the second. These functions conform to the rules for 
alphabetical order and are used for sorting strings alphabetically. 

Remember that letters of the alphabet equate to numbers in the ASCII system that 
Euphoria and other languages recognize. When using characters one at a time, if you 



surround the character with single quotes, it can be evaluated as a number using the 
relation operators. Strings may not be compared using the relation operators. 

    'A' > 'a'  -- this expression is allowed
               -- whether true or not   
         
    "A" > "a"  -- this expression is not allowed
               -- whether true or not

    compare("A", "a") = 1 -- this is the legal equivalent
                          -- whether true or not

Strings are compared letter by letter until a mismatch occurs. Based upon the alphabetical 
order of the letters, one may be larger than the other by being found later in the alphabet. 
The length of the string is also considered when comparing strings alphabetically. 



Boolean Expressions 

George Boole formulated some of the rules of mathematical logic, so logical assertions 
have been called "Boolean expressions". This is part of the study of mathematics that 
seeks to formulate pure logic. Euphoria always evaluates an expression as either true or 
false. For instance, 4 > 5 is an expression which is false. Euphoria expresses true and 
false as 1 and 0. You can see the Boolean evaluation by printing (and thus evaluating) the 
expression. 

? 4 > 5  -- result 0 is printed, it is false
? 5 > 4  -- result 1 is printed, it is true



Compound Expressions 

In Euphoria, a compound Boolean expression is created by connecting two Boolean 
expressions with a "logical operator". The two most commonly used logical operators are 
and or. 

The and operator requires both expressions to be true if the compound expression is to be 
true. When the or operator is used, only one of the expressions has to be true for the 
compound expression to be true. 

The following are simple examples: 
 
    Expression                              Evaluation
    ==========                              ==========
    10 > 5 and 100 < 200                    True
    3 < 6 and 7 > 10                        False
    8 < 7 or 90 > 80                        True
    2 < 1 or 3 > 60                         False
    'Y' > 'N' and not equal("yes", "no")    True
    'Y' < 'N' or 4 != 4                     False 

The not operator reverses the truth or falsity of an expression: 

    Expression                              Evaluation
    ==========                              ==========
    not (5 > 10)                            True
    not (8 < 7 or 90 > 80)                  False
    not (3 < 6 and 7 > 10)                  True
    not (0)                                 True
       
The logical operators can be combined to build up very complicated compound 
expressions. There is virtually no limit to the possible complexity. 

NOTE: Euphoria will evaluate a compound relational statement only as far as necessary.  
The first comparison that makes the entire combination false is the point where 
comparison stops. This energy-saving feature is called short-circuiting. 



Using Logical Statements to Control 
Program Flow 

Which is more important? What decision should be made? Euphoria has a mechanism to 
decide which part of the program to execute next: The if...then...else statement. 

This is the syntax of the if...then...else statement: 

  if booleanexpression then
    statements to do something
  else
    statements to do something else
  end if



Repeating Program Operations 

Euphoria offers several ways to execute a group of program statements repeatedly. You 
can repeat them a fixed number of times or until a particular logical condition is met. If 
you want to execute a block of statements 100 times, you need only type them in once. 
Euphoria's control structures then control the repetitions. 

The ability to repeat program statements has many uses. For example, to enter data for a 
ten-element array, you must prompt the user ten times.   Loop operations make this 
possible.



The for...do Loop 

One way to repeat a section of the program is the for loop. Use the for loop when you 
know in advance exactly how many repetitions are needed. 

Consider the syntax: 

   for count = 1 to 5 do
     printf(1, "this line is printed 5 times; this is time %d\n", count)
   end for
  
The output printed by the above example follows: 

   this line is printed 5 times; this is time 1
   this line is printed 5 times; this is time 2
   this line is printed 5 times; this is time 3
   this line is printed 5 times; this is time 4
   this line is printed 5 times; this is time 5

In the example above, the variable count is called the "loop variable" or "loop counter". 
The two numbers after the equal sign (separated by the keyword to) are the start and end 
values for the loop counter. In this example, 1 is the start value, and 5 is the end value. 

The loop counter is a special variable in Euphoria that should not be declared, but which 
is automatically declared at the start of the loop and automatically destroyed at the end of 
the loop. The variable will not be recognized outside the loop and should not be replaced 
by a declared variable used elsewhere. 

Before the for statement is executed the first time, the loop counter is given the value of 
the start value (in this case 1). After each execution (repeat) it is increased by 1. This 
continues until the counter is greater than the end value (in this case 5) at which moment 
the loop ends and the counter variable is destroyed. The program then continues on the 
next line following the last line of the loop, "end for" or "end while".

You can also count in increments other than 1, by 2 or by 5, for instance. You can count 
backwards (count down) by properly constructing the loop to do so, and by introducing 
the by keyword when appropriate. See the following example: 

   for count = 5 to 1 by -1  do  -- minus one is the increment, 
                                --decreasing
      printf(1, "this line is printed 5 times; this is time %d\n", count)
   end for

You must be consistent making sure that the start and end values make sense, and making 
sure that the step value makes sense in the context of the statement. 



The while Loop 

The while loop is used when the exact number of repetitions is not known in advance. 
Use the while loop for indefinite loops. That is, based upon immediate conditions, a 
while loop might not execute even once or perhaps four times, or perhaps thousands of 
times. 

Here is the syntax: 
   
   while <booleanexpression> do
      <statements to be repeated>
   end while

Here is an example of how it works: 

   big = 256.0
   little = 1.0
   while big != little do
       printf(1, "big = %d    little = %d\n", {big, little})
       big = big / 2.0
       little = little * 2.0
   end while

The variables big and little are not equal outside the loop, but the variables are changed 
in value as the loop repeats. At some point big and little will be equal, if not, then the 
loop will never end because the loop is designed to end when they equal. The expression 
big != little following the while keyword determines the conditions under which the loop 
will execute. If big and little were equal at the start, the loop would not execute even 
once. While the expression is true, the loop executes, when the expression is false, it is 
finished. 

In the above loop, the exit is taken from the top of the loop where the comparison is 
made. By placing a constant in the expression place, the "expression" is always true and 
the loop is endless. To prevent an endless loop, we can use a comparison test at the 
bottom of the loop containing the exit statement. This is how to make a loop that exits 
from the bottom instead, and it guarantees that the loop will execute at least once. 

   -- start with an "endless loop" but give it an exit
   num = 0
   while 1 do               -- the test is always true
      num = num + 1
      printf(1, "%d\n", num)
      if num > 10000000 then
          exit                 -- exits here
      end if
   end while



Programmers call this kind of while loop that exits from the bottom (instead of the top) a 
"do until" loop.  A do-until loop always executes at least once.  There is another way to 
do this without using a "forever loop".

   -- do it at least once, if that did not meet the condition then    
-- continue until it does.

   num = 0
   num = += 1  -- num is increased at least once, but possible more 

--times.
   while n <= 10000000 do       -- when true the loop quits here at the 

--comparison logic       
      num = += 1
      printf(1, "%d\n", num)
   end while                      -- it may exit from the top, but the 

--continuation follows this line

The result of this loop is the same; it is a "do until" loop.  It executes at least once, but in 
this case, it exits from the top without any extra exit statements.  Like the example before 
it, it continues until a condition is met, not while a condition is met.

Be sure that the condition of the loop's test can be met to ensure  that the loop will end. 
Design the comparison test carefully. Be sure the test variables have the value you want 
before you enter the loop. 



Exiting Loops 

Any loop in Euphoria may be exited prematurely by using the exit statement. An exit 
statement in a for loop means the loop will end before the counter's end value is reached. 
The exit is designed to be contained inside an if..then statement in order to exit loops 
conditionally. 

   for i = 45 to 0 step -5 do
     printf(1, "%d", i)
     if i < 5 then
       exit
     end if
   end for

  n = 0 
  while 1 do
     n += 1
     if n > 100 then
       exit
     end if
   end while



Library Files 

Much of the language of Euphoria is optional and available only when extra library files 
are loaded. To load a library file, you place an "include" statement above the code where 
the optional features will be used. This mild inconvenience is designed to keep the 
programs as compact as possible. Libraries not needed are not loaded, and Euphoria is 
more efficient as a result. 

     include get.e
     include misc.e

To use the prompt_string() and prompt_number() routines you will need the get.e 
library file. The file.e file is necessary if you want either the seek() or where() functions. 
The bk_color(), text_color(), get_position(), sound(), and cursor() functions are found 
in the graphics.e file. The lower() and upper() functions may be found in the wildcard.e 
library file. 

dll.e
 
file.e
 
get.e
 
graphics.e
    
image.e
 
machine.e
 
misc.e
mouse.e
msgbox.e
sort.e
wildcard.e

NOTE:You may write your own library files based on some specialty.  If you are a real  
estate agent, you might write code that is real estate specific that other real estate 
professionals will want to use in their real estate programs. You can store all code 
related to real estate together in its own library, real_estate.e, that is loaded with 
include real_estate.e at the top whenever a program is real estate related. 

Libraries for Windows programming end in *.exw.



Top Level Statements

NOTE: The term "bug" means "troublesome program flaw" ; the term "debug" means to 
fix problems with the program.

 There are special statements that must occur at the top level, above the other code, when 
they occur.  The include statement is one these; it calls for the inclusion of library files 
that are usually needed in larger programs.
 The with and without statements are top level statements that refer to Euphoria 
debugger and the process of debugging.  There are profiling features that offer metrics for 
debugging and optimization.
 The debugger allows tracing, single-stepping from statement to statement inspecting 
variables as you go.  This process is turned on with the with trace top level statement; it 
is turned off with the without trace statement.
 Type-checking is a great safety feature and debugging feature that can be turned on and 
off with with type_check and without type_check statements.
 Use it to turn on/off the profile and profile time features.
 In the interest of completeness, the Euphoria debugger issues warning statements 
automatically at the end of program execution, but this feature can be turned off with the 
without warning statement.



Simple Program Example 

Consider how to write a simple program and how to describe it beforehand. We will 
describe a simple program with a single purpose using 5 steps. 

1.  Prompt the user for the quantity of number to be averaged.

2.  If the quantity is zero or negative, print a warning 
    message and do nothing else.

3.  If the quantity is positive, pick a variable name for the 
    running total and set it equal to zero. The user has selected the number of entries.

4.  Prompt for the numbers one at a time.  Tell the user each time 
    which value is being entered (number 1, number 2, number 3, and so on.)

5.  When all the numbers have been entered, compute and 
    print the average value of all the numbers entered and stored.

Here is the simple program: 

include get.e                  -- get.e is needed for prompt_number()
atom total, valu, howmany   

howmany = prompt_number("How many numbers do you wish to average? ",
                         {1, 100})

                                      
total = 0.0                        -- initialization of total
if howmany > 0 then                -- extra precaution
   for count = 1 to howmany do      -- for counter automatically 

--declared!,                 
                                  -- good.
    printf(1, "number %d", count)  -- each entry counted with count shown
    valu = prompt_number("? ", {}) -- get each entry, floating point
    total += valu                  -- same as "total = total + value"
  end for

  -- the last statement is run once, outside the for loop
   printf(1, "The average value is %f\n", total / howmany)  
end if

abort(0)  -- normal program end



Debugging

NOTE: The term "bug" means "troublesome program flaw" ; the term "debug" means to 
fix problems with the program.
When you finish writing your program, it is highly unlikely that it will run without error. 
Bugs, errors, are a fact of life for the computer programmer.  Some errors are syntax or 
typographical errors and others are mistaken logic.  All you know in the beginning is the 
program will not run correctly or it will not run at all.
 Euphoria is designed to eliminate bugs at the earliest convenience.  This is one of the 
reasons Euphoria is pleasure to program.  The extensive type checking built into the 
environment stops many errors from the start.  When errors stop your program, there is a 
clue on the screen and there are more clues in a log file saved to disk, ex.err.  Read the 
text file to see the content of variables just prior to the problem.  This is very valuable 
information.  Very large sequences will be shown only partially.  In some cases, you can 
have all the executed statements leading up to the disaster.  Remember to inspect ex.err.
 The crash statement, the statement left on the screen after the program crashes, is often 
very helpful, but it usually points the finger at the lines or clauses directly following the 
true error.  The line with an error may be shown on the screen, or the line following the 
error may be shown.  If you forgot the closing ']' brace, the debugger leaves the message, 
"Syntax error - expected to see ']' possible, not a variable."  Of course, you will quickly 
learn that you made a typographical error.  The variable actually follows the error.  If you 
neglected to supply the end procedure statement at the end of a procedure called 
CheckAll() that precedes a procedure called CheckOne(), the error message might be:

       Syntax error - expected to see 'end' not 'procedure'
    procedure CheckOne()
            ^
 The debugger points to the line following the error, the next line that declares the next 
procedure.  The debugger was looking for the end procedure statement when it 
encountered the procedure CheckOne() statement instead.  So the line with procedure 
CheckOne() is not the location of the error, but it is the line that directly follows the 
error, in this case, an omission.
 Notice that the debugger has also named the line where the program stopped.  Here is the 
message when too many parameters (arguments)  are assigned to the find() statement 
(line 422):
    C:\EUPHORIA\DEV\myprog.exw:422
    find takes only 2 arguments
             if find(trep, subchoice, {1, 2, 3, 4, 5}) then



                                         ^
 A debugger is a valuable tool for programmers that is not always available for every 
programming environment (product), but in Euphoria a sophisticated debugger is built in. 
The most valuable debugging tool is the tracer.  At the top of the program the with trace 
statement must be in effect or the tracer will not work.  Tracing begins on the first line 
that contains the trace(1) statement.  This ensures that the program proceeds as normal 
until the statement is encountered at which point the program stops at that line and lights 
up the debug screen.  You can step one line at a time by pressing the ENTER key.
 The debug screen is divided.  Above is the code with color coding and highlights and 
below is a field where variable contents are revealed automatically.  If you do not see the 
contents of a variable of interest to you, you can get what you want by choosing ? and 
entering the variable's name.  The variable will be added to the lower field and its 
contents shown.

 The debugging steps might lead you inside a loop with hundreds of iterations, but rather 
than quit or rather than press the key hundreds of times, you may exit the loop 
immediately with the DOWN-ARROW button on your keyboard.  As you step through 
the program lines you learn how the program statements work.  You see the variables 
change normally, but you can catch it very slow motion.  You can leave the debug mode 
and continue the program at full speed  by typing 'q'.  The program will proceed to the 
finish unless another trace(1) command is encountered.  If you type a capital 'Q' instead, 
the program will proceed to the finish at full speed ignoring any other trace(1) statements 
it finds.

NOTE: the trace(2) statement is the same but with a monochrome screen.  The trace(3) 
statement will record all executed statements and save the record to a file called 
ctrace.out.

 While trace is in effect, you can peek at the output screen as it changes by typing the F1 
key; you return to the trace screen by typing the F2 key.  The DOWN-ARROW key will 
also let you single-step procedures and functions without tracing inside them.  Type the ! 
key quit the trace, program and all.  See ex.err for a tracing log.



 Editors
An editor is a trimmed-down, basic word processor.  Some editors for programmers offer 
color coding of identifiers and other special features programmers appreciate.  Some 
editors are designed for Windows, others are designed for character-based operation, 
even on Windows.  A DOS editor is included with Windows  and can be invoked by 
typing edit on the console command line.  This editor is important because it has resided 
on millions of computers and its operation is familiar to millions of people.  Windows 
includes two free Windows editors, Notepad and Wordpad.  Wordpad is actually a word 
processor.  Notepad resembles the DOS editor.  If you use a word processor, you must 
choose the option to save as a *.txt file, but do not use the .txt ending, use .ex for DOS 
and .exw for Windows.  Any files other than so-called ASCII files will have processor 
codes that mess up the translation process.  Many programmers are quite happy with 
Notepad.  If you have a choice of font, choose Lucinda Console or some typewriter font, 
these have equal spacing of characters and are easier to read when writing code.
 The Euphoria editor is available free with the installation of Euphoria.  The Euphoria 
editor is a character-based editor like DOS Edit.com but it has special features for 
programmers, and it is written entirely in the Euphoria language; it is invoked by typing 
ed at the command line in the console window or screen.  Though it does not resemble 
the editors mentioned previously, it is full-featured and easy to learn.  It is recommended 
because the color coding of the code clarifies the code.  You can run code from the 
editor.  You can search, cut and paste.  You can list the editor's help file, and you can 
scan the Euphoria documentation that includes a definition of the entire language at your 
fingertips.  It is challenging enough to learn a new programming language, but you must 
also learn to use an editor if you have not already mastered a compatible on



Ed's menu, type the ESC key.  The menu is s single line at the top of the screen. 
       help clone quit save write new ex dos find replace lines 
mods ddd CR:_

Press and release the Esc key, then press one of the following keys:
h   - Get help text for the editor, or Euphoria. The screen is split so you
      can view your program and the help text at the same time.

c   - "Clone" the current window, i.e. make a new edit window that is
      initially viewing the same file at the same position as the current
      window. The sizes of all windows are adjusted to make room for the new
      window. You might want to use Esc l to get more lines on the screen.
      Each window that you create can be scrolled independently and each has
      its own menu bar. The changes that you make to a file will initially
      appear only in the current window. When you press an F-key to select a
      new window, any changes will appear there as well. You can use Esc n to
      read a new file into any window. q   - Quit (delete) the current window and 
      leave the editor if there are no more windows. You'll be warned if this is the 
       last window used for editing a modified file. Any remaining windows are 



       given more space.

 s   - Save the file being edited in the current window, then quit the current
       window as Esc q above.

 w   - Save the file but do not quit the window.

 e   - Save the file, and then execute it with ex, exw or exu. When the program
       finishes execution you'll hear a beep. Hit Enter to return to the
       editor. This operation may not work if you are very low on extended
       memory. You can't supply any command-line arguments to the program.

 d   - Run an operating system command. After the beep, hit Enter to return to
       the editor. You could also use this command to edit another file and
       then return, but Esc c is probably more convenient.

 n   - Start editing a new file in the current window. Deleted lines/chars and
       search strings are available for use in the new file. You must type in
       the path to the new file. Alternatively, you can drag a file name from a
       Windows file manager window into the MS-DOS window for ed. This will
       type the full path for you.

 f   - Find the next occurrence of a string in the current window. When you
       type in a new string there is an option to "match case" or not. Press y
       if you require upper/lower case to match. Keep hitting Enter to find
       subsequent occurrences. Any other key stops the search. To search from
       the beginning, press control-Home before Esc f. The default string to
       search for, if you don't type anything, is shown in double quotes.

 r   - Globally replace one string by another. Operates like Esc f command.
       Keep hitting Enter to continue replacing. Be careful -- there is no way
       to skip over a possible replacement.

 l   - Change the number of lines displayed on the screen. Only certain values
       are allowed, depending on your video card. Many cards will allow 25, 28,
       43 and 50 lines.

       In a Linux/FreeBSD text console you're stuck with the number of lines
       available (usually 25). In a Linux/FreeBSD xterm window, ed will use the
       number of lines initially available when ed is started up. Changing the
       size of the window will have no effect after ed is started.

 m   - Show the modifications that you've made so far. The current edit buffer
       is saved as editbuff.tmp, and is compared with the file on disk using
       the DOS fc command, or the Linux/FreeBSD diff command. Esc m is very
       useful when you want to quit the editor, but you can't remember what



       changes you made, or whether it's ok to save them. It's also useful when
       you make an editing mistake and you want to see what the original text
       looked like.

 ddd - Move to line number ddd. e.g. Esc 1023 Enter would move to line 1023 in
       the file.

 CR  - Esc Carriage-Return, i.e. Esc Enter, will tell you the name of the
       current file, as well as the line and character position you are on, and
       whether the file has been modified since the last save. If you press Esc
       and then change your mind, it is harmless to just hit Enter so you can
       go back to editing.

 My personal favorite editor is David Cuny's free DOS editor ee that availble at the RDS 
website.  It resembles the DOS editor and operates virtually like clone, so it is easy, easy, 
easy.  But it also has extend programming features like color coded source text.  It is fair 
to call it an IDE rather than  an editor.  It has many of the special programming features 
like ed that programmers crave. 
New programming editors for Windows are being developed all the time, and many of 
them are customizable so they can be customized to suit Euphoria.  Check the Archive at 
the RDS website periodically to see new product.



More on Sequences 

NOTE:  In programming, a string is a series of printable characters, usually a sentence 
or phrase.  In Euphoria, strings are handled as sequences.  Each character in a string is  
an individual element that can be specified with a numerical subscript, or sliced with a 
subscript range.  We surround strings with double-quotes to distinguish them from 
identifiers.

Regardless of type, all variables other than for-loop counters must be declared and then 
initialized before they can be used in an expression. As previously stated, initialization is 
the first assignment made to a newly minted variable. It is customary to initialize atoms 
to 0.0 and sequences are often initialized to empty, either "" or {}. 
    
    sequence my_series
     my_series = {}

If you assign an atom value to the sequence, my_series, you will cause a fatal error, but 
you may append an atom to an empty sequence, indeed to any sequence. There are two 
ways to do so. 

     my_series &= 45.67
     
         -- or --
      
      append(my_series, 45.67)

In either event, my_series is now {45.67}. It is not an atom -- it is a sequence of length 
one whose first element is an atom. You may put any value at any element in a sequence, 
and you may enlarge or decrease any sequence at will. Actually each element of a 
sequence is an object data type capable of handling any data type.  

NOTE:  If you reassign a sequence (or any variable), you will destroy the original  
contents first. 

It is a common mistake to try to assign an atom to a sequence and it is more common to 
attempt to append values to an uninitialized sequence. 

However, each element in a sequence can be singled out with a subscript number, and 
that element may be treated as an object variable that may assume any value. Therefore, 
you may assign an atom value to a sequence element when you identify the element with 
a subscript. Of course, the element must first exist. 

In the above example, we went from an empty sequence to a sequence with one element 



whose value is 45.67. You can now assign other atom values to this element. 

     my_series[1] = 500000.00099 
      -- now my_series is {500000.00099}

However, the following is an error: 

     my_series[2] = 45.67

...because my_series only has one element. To create another element, you must append 
it. To create more elements, append, but you may assign to elements that already exist. 
For instance, we might have done this instead: 

     my_series = my_series & 45.67

      -- now my_series is {500000.00099, 45.67}  

If you know that you want a sequence with 12 elements, and it is unlikely that the number 
of elements will change, you may prefer to dimension the sequence immediately after 
declaring it. 

      my_series = {0,0,0,0,0,0,0,0,0,0,0,0}

Now that my_series has been initialized and now that my_series has 12 elements 
established, you may address each of the elements separately and assign to them as you 
like. 

     my_series[12] = "end"

Of course, if you need a sequence of twelve elements with the name of each month in 
each element, you can initialize the sequence to those values. 

     monthnames = 
{"January","February","March","April","May","June","July","August","Sep
tember","October","November","December"}
     
     -- then....

     puts(1, monthnames[5] & '\n')

     --  prints May

If you want a data type to symbolize a chess board you need a matrix. The chessboard is 
a matrix of 64 empty values. That is, eight rows by eight columns. This can be emulated 
by a two-dimensional array, which is created in Euphoria with a sequence. 

     sequence ChessBoard
     ChessBoard = repeat(repeat(0, 8), 8)
     
     -- or --



     ChessBoard = {
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0},
                    {0,0,0,0,0,0,0,0}
                  }

The second square on the third row is ChessBoard[3][2]. The fourth square on the last 
row is ChessBoard[8][4]. Note the two subscripts for the two dimensions. You can also 
create 3 or more dimensions. It is very rare that more than four dimensions are ever 
needed in any array. 

Chess players use a, b, c, d, e, f, g, h to identify the rows (starting on the left side), and 1, 
2, 3, 4, 5, 6, 7, 8 columns (starting from the bottom, white's side).  If you declare the 
constants:

    constant h = 1, g = 2, f = 3, e = 4, d = 5, c = 6, b = 7, a = 8
          
      -- so --

     ChessBoard[h][1]  -- upper left hand corner

When a sequence holds only a series of numbers from 0 to 255, the sequence qualifies as 
a string because that is the range of codes for printable characters. Conversely, a 
sequence used as a string, like a sentence or a phrase, can be printed like a series of 
numbers instead. Observe... 

     seq1 = "Euphoria"

     puts(1, seq1)

     -- the result is Euphoria, but...

     ? seq1

    -- the result is {69,117,112,104,111,114,105,87}

In the above example, 69 is the ASCII code for capital "E" and 87 is the ASCII code for 
little "a". 
In fact, the sequence type allows sequences of sequences, such as... 

     monthnames = 
{"January","February","March","April","May","June","July","August","Sep
tember","October","November","December"}

This is no longer a string, but a sequence of strings. Another name for this is nested 



sequence. There are some procedures that must work with strings and will fail if given 
nested sequences. For instance, puts(). You cannot print with puts() the sequence 
monthnames because it has a sequence within a sequence (a string within a sequence), 
but you can print any of the elements because each of the elements alone is a string. 

     puts(1, monthnames)  -- Wrong!  This generates an error.

     puts(1, monthnames[5]) -- Correct.  A single element in this sequence 
--is a string

                         
From the example above, the sequence monthnames is a nested sequence and the two-
dimensional array, ChessBoard, is also a nested array. To single out the third element in 
monthsname you use monthnames[3]. In other words, monthnames[3] is "March", but 
monthnames[3][3] is 'r' (the third letter in "March"). 

You must be careful and mindful of your actions when getting started with sequences, but 
in time they will be easy and will be second nature. For instance, observe the difference: 

     list_of_data = {}
     list_of_data &= 89
     list_of_data &= 345
     
     --- list_of_data is {89,345}

     list_of_data &= {102}  -- see the curly braces
   
     --- list_of_data is {89,345,{102}}
     --- because {102} is a sequence of one element
     --- not an atom.  Therefore, list_of_data is now a nested sequence
    
     -- Also, FYI, {{89,345,102}} is a nested sequence as well

Up to now, sequences have been used for strings, arrays, and multidimensional arrays, 
but now let us inspect another use for the sequence data type, records. Record variables 
are sometimes called structures, structs, or user-defined types. To consider a record 
variable consider a typical record (as in record-keeping). If you see a telephone directory 
as a huge table, then each entry (customer) is a single record. For each record, there is 
name, address, and telephone number. This is true of each record among thousands. What 
is a record for? If we only wanted to list a thousand names, we could use an array, but if 
we want more information for each name, then we need an array of record variables. 
There is very little difference between an array of records and a database. 

    { 
       "John",                 -- look closely for commas
       "C.", 
       "Doe",
       "123 Alpha Drive",
       "345-4567
     }



So we have a nested sequence where each of the elements is another sequence used as a 
string. This separation of details allows us to focus on details when necessary. We might 
go further with this. 

    sequence tel_rec
    tel_rec = {}           -- initialization
    tel_rec &= {0,0,0,0,0} -- the first record
     
    atom tel_fname, tel_mname, tel_lname, tel_address, tel_number
    tel_fname   = 1
    tel_mname   = 2
    tel_lname   = 3
    tel_address = 4
    tel_number  = 5
     
    tel_rec[1][tel_fname]   = "Megan"
    tel_rec[1][tel_mname]   = "E."
    tel_rec[1][tel_lname]   = "Hooper"
    tel_rec[1][tel_address] = "434 Elm Lane"
    tel_rec[1][tel_number]  = "432-8427" 

   -- each record has its own serial number (1 here), but each has
   -- 5 items of data, first, middle, last, address, and telephone 
  --number
     --
Megan, here, is our first customer and our first record. If we have thousands of 
customers, each has a number, a customer i.d.. We might call it the customer's account 
number. 

     tel_rec[237937][tel_number] = "443-4837"

Customer number 237937 has telephone number "443-4837".



Comparing Strings 

Comparing values is a common activity in programming, but comparing strings is more 
complicated than comparing numbers. String comparison is a central action in any 
alphabetical sorting routine. You must not use the >, <, >=, <=, or = operators with 
strings. 

If you want your program to discover if two strings are equal, use the equal() function 
that returns 1 for true and 0 for false. This makes it useful and fluent when combined with 
the if statement. 

     if equal("miss", "Miss") then
           --<someactiontaken>
   end if

You can also use the compare() function for this and for other things. This function 
returns 0 for equal, -1 for less-than, and 1 for greater-than, alphabetically (in fact, 
compare() can also compare numbers in like fashion, it was designed to be 
multipurpose).  If you design your sort routines with compare(), they will sort strings as 
well as numbers.

Comparison starts with the first character and continues until there is a difference in 
comparison. If a string has added spaces on the end, it will be judged greater than the 
same string minus the added spaces. 



Searching for Strings 

NOTE:  A string is a series of printable characters, usually a sentence or phrase.  We 
surround strings with quotes to distinguish them from identifiers.

One of the most common string processing tasks is finding a string within a string. In 
Euphoria, the match() function is the method to use. If a smaller string is found within a 
larger one, match() returns the number that is the index into the searched string. If the 
inner string starts at the third character, then match() returns 3. 

     string1 = "A line of text with 37 letters in it."
     string2 = "letters"

     puts(1,   "         1         2         3         4\n")
     puts(1,   "1234567890123456789012345678901234567890\n"
     
     ? match(string1, string2)

     Output
              1         2         3         4 
     1234567890123456789012345678901234567890
     A line of text with 37 letters in it.
      24  

You may use find() to search for single characters within a string as long as you specify 
the single character with single quotes around it.  Use find() for this because it is much 
faster than match().



Retrieving Characters from Strings 

You can retrieve characters, or strings of characters (called slices), from anywhere in a 
string using subscript notation. The characters in a string are numbered 1 to the last 
character in the string. You can find the last character's number by using the length() 
function, and you can refer to the last number within brackets [ ] by using the $ character. 
To specify the last character: 

     str1[$]

If you want to specify the third character (counting from the left): 

    str1[3]

If you want to assign the first three characters to another sequence use the following 
technique: 

  smseq = str1[1..3]

If you want to assign instead the last three characters use the following: 

    smseq = str1[$-3..$]

If you want to slice off five characters starting with the fourth character then use the 
following: 

    smseq = str1[4..9]

You are not allowed to slice from beyond the true length of the string. If you miscalculate 
the length, an error will occur. Use the length() function to stay within string bounds and 
avoid errors.



Generating Strings 

The repeat() function can generate any length string using repeating characters or 
repeating slices. 

     puts(1, repeat('r', 20))

     
     Output
     rrrrrrrrrrrrrrrrrrrr

       
You can also create a string of invisible spaces the same way. 



Numbers and Strings 

Euphoria does not allow a s string to be assigned to a numeric variable, nor does it allow 
a numeric expression to be assigned to a string variable. For example, both of these 
statements result in an error message, Type_check failure,...

     TempBuffer = 45
     Counter = "45"

Instead, use the value() function to transform the string to its equivalent number. The 
string, "45", makes numeric sense, therefore a function like value() can transform it. Use 
sprintf() to do the opposite, change a number to its string equivalent. 

To use value() in your code, include get.e at the top... 

   include get.e

   sequence s
   atom num

   s = value("45")

   --  s will be a sequence with two elements.  In the first element,
   --  there is an error code, and in the second element, the value.
   --  The codes are GET_SUCCESS, GET_EOF, and GET_FAIL.  With either
   --  failures, the second element will be 0, but with GET_SUCCESS, the
   --  second element equals the atom value equivalent
   --  s is {GET_SUCCESS, 45}  
   
   if s[1] = GET_SUCCESS then
      num = s[2]  -- num is 45
   end if

The value() function can even work with mixtures, like "36P". As long as numerals stand 
before letters, then value() will recognize the numerals and ignore the letters, but only if 
numerals come first in the string, otherwise letters will transform to 0, no value. 

    s = value("36P")
    
    -- s is {GET_SUCCESS, 36}

The BASIC programming language has a VAL() function that returns a 0 if no numerical 
value can be detected and the number otherwise. In Euphoria, you may duplicate this 
useful function by writing your own function based on value(). 

    function val(object parm)
      if sequence(parm)then



        parm = value(parm)
        return parm[2]
      else
        return 0     
      end if
    end function

You may use val() anywhere in your program following the definition above. 

Now, the opposite transformation is also a common task in programming: changing 
numbers to their string equivalents. The sprintf() function duplicates the printf() 
function in detail with the exception that sprintf() prints the return value to a string or a 
text stream instead of the screen and only requires two parameters. Therefore, sprintf() 
uses two parameters instead of three because we are not printing to screen or other 
device. It is a side-effect of this function that numbers become strings, the function 
returns a string. 

    sequence str9

    str9 = sprintf("%d", 45)
    
    -- str9 is now, "45"



Changing Case 

Euphoria provides lower() and upper() functions for changing the case of letters and 
strings, but you must include the wildcard.e file first. These two are functions that return 
the string in the proper case. If a lower case string is placed as a parameter to the upper() 
function, the function returns the string in all upper case letters. Even if the original string 
is a mix of upper and lower case characters, a fully capitalized version of the same string 
is returned. If the parameter is already upper case, it will not generate an error when the 
same string is returned. 

     include wildard.e

     str4 = "exit"
     str4 = upper(str4)
     
      -- str4 now equals "EXIT"

     str4 = lower(str4)

      -- str4 now equals "exit"

     str4 = upper("Exit")

     -- str4 now equals "EXIT"



Changing Strings 

Not only can we analyze and slice strings, but we can change them, too. The secret is the 
use of the sub-scripting and concatenation features of sequences. 

     sequence Temp

     Temp = "In the sun."
     printf(1, "%s\n", Temp)

     -- Replace the "I" with an "O"
     Temp[1] = "O"

     -- Replace "sun." with "road":
     Temp = Temp[1..6] & "road"
     printf(1, "%s\n", Temp)

     Output
     In the sun.
          On the road



Combining Strings 

Strings can be combined with the ampersand (&) operator. The string following the 
ampersand is attached to the string to the left of the ampersand, as shown in the next 
example. 

     a = "first string"
     b = "second string"
     c = a & b
     puts(1, c & "\n")

     Output
     first stringsecond string

The process of joining strings this way is called "concatenation", which means linking 
together. 
Note that in the above example there are no intervening spaces. There are a number of 
ways to supply the space. Such as: 

    b = " second string"    -- leading blank in b



More Data Types 

In mathematics, a whole number with no fractional part is called an integer. We use 
integers constantly to describe age, attendance, and population to name a few. Most 
programming languages offer an integer data type in the interest of efficiency, 
compactness, and performance. Integers use about half the memory space required for 
floating-point numbers, and their operations are much swifter. This becomes important in 
programs that need maximum speed and in database applications where large amounts of 
disk space are devoted to storage. In fact, most professional programmers have a policy, 
never use floating-point variables when integer variables will do. When you follow this 
advice, you will appear more professional in your output. 

The 31-bit technology behind Euphoria's integer variable is responsible for its great 
efficiency but this limits its capacity to little more than a range of 1073741823 to 
-1073741824. 

Euphoria also offers a very special data type, the object, that is smart and flexible. The 
object can mold itself into any type of variable as needed. An object variable may start 
with integer values and shift to atom or sequence values. Any object may also be a string. 
A price is paid in efficiency when using objects. Unless some compelling technique 
asserts otherwise, it is best to save the use of objects for special situations. 

However, in today's world where machines are very fast and memory is cheap, strategies  
for bullet-proof error-handling exploiting the properties of objects may well be 
justifiable.  In such schemes, all variables are the object data type.

When you declare the parameters of routines to be object type, then the routines may be 
made so versatile as to accept any manner of data. The object helps provide robustness to 
programs by avoiding a mishap in the form of unexpected type mismatches. 

The object shines as a safe repository for any unknown value. With an unknown value 
safely contained, it may be polled or tested in order to accommodate the immediate 
circumstances during program execution. 

Both integer and object variables must be declared in much the same way atoms and 
sequences are. 

    integer my_age, attendees, num_voters
    object buffer, inp

Even though two data types, atom and sequence, can handle any program, you now have 
four data types to choose from, atom, sequence, integer, and object. The integer and the 
object are used to make programs more sophisticated. 



Testing for Type 

Euphoria has functions to test and ensure the type of any unknown value. Not 
surprisingly, the test for atom type is the function atom() which returns true or false 
based on the data supplied as a parameter. In like fashion, there are the functions 
sequence(), integer(), and object(). The inclusion of object() is merely in the interest of 
completeness since object() must always return true, all values qualify as object. 

Testing the data type prior to use of the variable adds robustness and flexibility to the 
code. It is central to the programming discipline known as error handling that makes 
programs rugged and reliable. 

In common use, an object variable may safely claim an unknown value which is then 
tested for type by one of the above functions. 

   object x
   sequence ln
   integer fn

   -- a string is returned by gets() until the end of the file
   while 1 do
      x = gets(fn)
      if atom(x) then
         exit   -- end of file
       end if
       ln &= x  -- continue until ln has whole file contents
   end while

          Test                    Result
     ====                    ======
     integer(45.678)         0 (false)
     atom(45.678)            1 (true)
     sequence({45.67, 45})   1 (true)
     atom(1)                 1 (true) --an integer is also an atom



Constants 

When you refer in a program to a real number or a literal string, then these are 
categorized as constants, literal constants, or literals. Constants, like variables, are 
values, but unlike variables, they are not allowed to change. 

In Euphoria, as in most languages, there is a declared data type called constant that has 
real value in sophisticated programming. This kind of constant is used like a variable is 
used, but it may not change value while the program is running. The value is established 
when it is first declared. 

When critical values that never change, or that rarely change, are assigned once at the 
start of a program, then any re-writes that may take place later need only be changed in  
one conspicuous 
location. This is a chief purpose of constants. 

The declaration is similar to other types, it must be above the code that uses it, but the 
declaration includes the assignment statement as well. 

     constant drinking_age = 21,
                       aspect_ratio = 1.77,
                           salutation = "Greetings"

Obviously, constants may be any of the data types, the assignment determines this, but 
the constant does not consume storage memory the way other variables do. Euphoria 
actually copies the contents to each location where the constant is used. 

It is traditional to capitalize constants.  We often see a collection of constants at the top of 
a program to help in adding clarity to the code that follows.

    constant TRUE = 1,
          FALSE = 0,
                  SCREEN = 1,
          LOAN_LIMIT = 30



Writing Subroutines 

Beginners make good use of trivial, even silly, program examples, but real programs of 
some size should be subdivided into multiple user-defined routines. If a program 
performs some task, then it is a task that may be subdivided into smaller tasks. Take the 
time, therefore, to divide your program into subroutines, both procedures and functions 
designed by yourself. 

Note:  Subroutines might also be called subprograms or modules.

To prepare yourself for this, contemplate the excellent procedures and functions that 
come built-in to the Euphoria language. Remember that the only real difference between 
procedures and functions is that functions return values and therefore must be used in an 
expression like a variable or constant. 

Subroutines must be defined and recorded at some point in the code above the actual use. 
This is after the fashion of variables, because any attempt made to use a variable or a 
routine before its declaration results in an error, "...has not been declared" as if it did not 
exist. A typical program seems like a long list of routines followed by a few lines of 
initial code. 

    procedure toss_em(integer flag, sequence title)  -- procedure 
--declaration's first line

                            

In a larger program, there may be a need for a function called filter() that can remove 
characters from strings as variously specified. The function will accept two string 
parameters. The first parameter, text is the string to be filtered. The second parameter, 
filter_string, is a string containing the list of "acceptable" characters. Inside the function, 
any characters in txt not found in filter_string will be removed from the final output. At 
function's end, temp is returned complete with changes, the final product. The example 
shows both the function declaration/definition followed by the program code that puts it 
to use. We also add the val() function previously explained. 

     function val(object parm)
      if sequence(parm) then
        parm = value(parm)
        return parm[2]
      else
        return 0
      end if
     end function
     
     function filter(sequence txt, sequence filter_string)
     -- Takes the unwanted characters out of a string by 



     -- comparing them with a filter string containing
     -- only acceptable characters
       sequence temp, ch
       integer txt_len
        
       temp = ""
       txt_len = length(txt)
        
       for i = 1 to txt_len do  -- Isolate each character in 
         ch = txt[i]           -- the string

         -- If the character is in the filter string, save it        
         if find(ch, filter_string) != 0 then
           temp &= ch
         end if
       end for
       return temp
     end function

     -------------------------------------------------
     sequence a, clean_num

     -- Input a line
     a = prompt_string("Enter a number with commas.")

     -- Look only for valid numeric characters (0123456789.-)
     -- in the input string:
     clean_num = filter(a, "0123456789.-")  -- HERE WE ARE!!

     -- Convert the string to a number:
     printf(1, The number's value = d%\n", val(clean_num))
     abort(0)        -- end normally

We wrote the functions val() and filter() ourselves, but we used them in code as if they 
belonged permanently to the language. 

NOTE:When you declare and define a routine, if the routine accepts parameters, then the 
data type of each parameter must be declared as well. 

         
    --declaration and definition of 'filter()' function 
     function filter(sequence txt, sequence filter_string)
           edited = filter(form_entry, delimiters}   -- sample function call



The type Routine 

Euphoria offers a special kind of function routine, the type function, that enforces user-
defined data types and tests them for conformance. Instead of "function", the definition 
begins with "type" and ends with "end type", and it gives great latitude to design things 
your way. For instance, if you write a program that makes use of time and hours, then 
you might want to create an hour data type. Of course, it is not necessary -- you could 
use integers or atoms quite nicely, but if you make your own hour data type, you can 
enjoy an extra layer of error handling. 

NOTE:  Type functions, like atom() or sequence(), only return true or false. They must be 
so designed. 

Because hour does not exceed 23 nor is it less than zero, hour variables should not 
exceed these bounds. By creating an hour data type, Euphoria will automatically check 
for you that the hour variables are legal. 

     type hour(integer x)
       return x >= 0 and x <= 23  -- this defines hour type
     end type

     -- now you can declare variables as hour types
     hour my_time

     -- if you try to put 30 hours in this variable
     -- Euphoria will stop you with an error message.

One of the most useful uses for type is to make a string type of variable. Of course, you 
learned elsewhere that all strings are sequences, but not all sequences are strings. Because 
some routines fail when sent non-strings or nested sequences, we can profit from a string 
data type. 

     type string(sequence st)
       integer ln
       ln = length(st)
       for i = 1 to ln do  -- check each element
         if integer(st[i]) then  
           if st[i] < 0 and st[i] > 255 then -- ASCII code range
             return 0   -- if any one fails, the whole seq fails
           end if
         else
           return 0  -- if any one fails, the whole seq fails
         end if
       end for
       return 1   -- If you got here, success
     end type

      -- now you can declare variables of the string type



      string fname, lname

      -- you can also test a variable for string credentials
      if string(seq4) then
        seq4[1] = 32
      else
        puts(1, "Not a string\n")
      end if
      
Euphoria offers the option to turn off type checking in the interest of speed. When this is 
done, the user-defined type variables are not automatically checked.   The checking is 
needed most during development to look for errors, after the errors are eliminated, then 
checking can be turned off to get maximum speed performance.



Passing Parameters (Arguments) 

Subroutines, both procedures and functions, accept zero or more parameters (input) and 
return zero or more return values (output). If a subroutine does not return a value, then 
write it as a procedure. If you want the subroutine to pass back value(s) then write it as a 
function 

NOTE: parameters are also called arguments.

NOTE:  The command return, is used to end the subroutine and return to the line  
following the subroutine call, but in functions, return is followed by a value to be 
returned from the function.

When the subroutine is defined, each parameter pair (if there are any) is separated by 
commas. You may elect to have no parameters, in which case the parentheses remain 
empty. Whatever is decided in the beginning and defined in the definition is the rule that 
must apply to the use of routine. If a sub accepts three parameters, then three must be 
passed with each use. If the first is an integer, the second an atom, and the third a 
sequence, then the parameters must be passed in this order. The values must match the 
type specified in the definition. Each parameter must have a name (an identifier) like 
declared variables. 

    procedure print_x(integer dest, sequence patt, object items)
              
         ...
            <some statements to execute>
     ...

    end procedure

   -- In use...
   print_x(3, "%d %d", {34, 56})

In the above example, when print_x() is invoked, it must accept three values, and the 
three values must match the data type specified in the declaration line, "procedure 
print_x(integer dest, sequence patt, object items)". If not, then an error is generated. The 
parameters dest, patt, and items, become variables for use in the subroutine only. They 
are variables that disappear once the subroutine is finished. 

     function change_all_three(integer dest, sequence patt, object items)

       
       ….  



         <some statements that change the parameters>
         ....
         return {dest, patt, items}  -- return ends the routine and returns 
                                -- value, copies.
     end function

     -- In use...
     retseq = change_all_three(3, "%d %d", {34, 56}) 
     -- retseq is {56, "5789 575", {5732, 234}}
     
Parameters in Euphoria are passed by value, that is, even if a variable is sent as a 
parameter, only the value gets through, a copy of the value in the variable. The actual 
variable is not changed by what happens inside the subroutine. If the value copy is 
changed, the changed value can be returned if the subroutine is a function. By planning 
ahead, you can take the returned value and change the original variable if necessary. 
Functions have a wide latitude and can pass virtually any imaginable data structure. 

If the main body of code has an integer called loc, a sequence called key_seq, and a 
sequence called key_list, they may be passed to the parameters just as the constants were 
passed above. The fact that the parameters have their own names does not mean that only 
variables with those names may be passed. In fact, loc may be passed through the dest 
parameter because it matches the data type, but the value found in loc is copied into the 
variable called dest while it is in the subroutine. Here is an example of passing variables 
that match the data type properly: 

    retseq = change_all_three(loc, key_seq, key_list)
                                                        ^    ^        ^
                                                        |    |        |
                                                        dest  patt    items

In fact, by designing subroutines to accept an object, you can pass virtually anything as a 
parameter. If you pass a sequence, the sequence might be any length, which means you 
pass as many values as you like. In this example, all that is required is that you pass at 
least one variable. 

Here is another example. It is a function from a program called, 21.ex, that simulates a 
card game of blackjack (21). The function, count_hand() takes three parameters. 
   

function count_hand ( sequence hand, integer num )
--  This will inspect any hand to determine its score based upon the 
--  rules of the game.

    integer aces, card_value
    tot = 0
    aces = 0
    card_value = 0

    -- to keep score, count the value of the hand
    for i = 1 to num do  -- the parameter num is used



      --  is it a ten-score card?
      if find( hand[i][RANK], "TJQK" ) then   -- the parameter hand is used
        card_value = 10

      -- ace can be 11 or 1, which will be determined later
      elsif find( hand[i][RANK], "A" ) then
        card_value = 11
        aces += 1
      else

         -- in all other cases the suit does not matter for face value
         card_value = val( hand[i] )
   end if
    tot += card_value   -- the parameter tot is used
    end for

    -- score aces favorably as a real player would
    while tot > 21 and aces > 0 do
      tot -= 10
      aces -= 1
    end while
    return  tot
end function

-- in the main code below...

The following example shows how the values may be passed to the function.  The 
variables being sent have a different name than the parameter names found in the 
function's declaration.  That is normal; they must only agree in type with the previously 
named parameters.  It is their value that will be assigned to the parameters, hand and 
num.  Inside the function, the corresponding values will be called hand and num.

player_score = count_hand( player_hand, player_cards)
                                                       ^            ^            
                                                       |            |            
                                                       hand         num           

The variables player_hand and player_card can pass their values to function 
count_hand because they are compatible with the parameters hand and num.  Do not 
name the parameters after the variables to pass.  Name them what you will call them 
inside the function.  They will have the same value, but they will be utterly independent. 

In this description so far, Euphoria resembles many programming languages, but if you 
want more freedom and flexibility, then pass only one object or sequence and return an 
object or sequence (functions offer more flexibility since they return values as well). 
Within a single object or sequence you can pass virtually any conceivable series of values 
or data structures, but you must write your subroutine's code to handle the variations that 
are possible and reject anything outside your chosen range.  This is limitless in the 
possibilities, well beyond the typical programming language.



If you want the rest of your program to reflect the change of values inside your 
subroutine, pass the values back through a function's return like a relay, and then 
distribute the values as you see fit.



Files and I/O 
Note:
If a program (written in Euphoria or any other language) has a file open for writing, and 
you are forced to reboot your computer for any reason, you should immediately run 
scandisk to repair any damage to the file system that may have occurred. 

Most general purpose programming languages allow the programmer to read, write, or 
create disk files of text type and of binary type, and in most languages, it is a tricky topic. 
It is intricate because a full file operation is not a single statement but a series of carefully 
placed statements that cooperate in series to achieve the result. Such operations begin 
with opening or creating a file and end with closing it. In between, data is retrieved in 
parts or in whole. Data may be written and saved in parts or in whole. 

All file operations in any language are a silent cooperation with the operating system 
itself. The operating system is like a traffic cop who enforces rules of operation. A 
programming language is constructed to also enforce the rules of the operating system. 
For this reason, file operations in Euphoria for Linux differ slightly from operations for 
Windows or DOS. 

Essentially, a file operation begins with opening a file with the open() function using the 
file's name or the file's name and path. The open() function will then return a number 
which we call the file handle. It is the operating system that has assigned the number. 
Thereafter, in all subsequent operations on the file, we will refer to the file by the handle 
(a number) not the name. 

In most operating systems, there is a limit to the number of files that may be open at 
once, and though in modern computers that limit may be very high, it is a good idea to 
close the file by closing the file handle at the earliest convenience. If we are extracting 
information from the file, we store the information in variables and close the file before 
we analyze or a manipulate the data. We only keep the file open if we expect to 
immediately store some new information or some new form of the information to the 
disk. 

With the open() function, we must also specify the mode of file opening because there 
are many to choose from, each with its own restrictions. 

             "r"  - open text file for reading
             "rb" - open binary file for reading
             "w"  - create text file for writing
             "wb" - create binary file for writing
             "u"  - open text file for update (reading and writing)
             "ub" - open binary file for update
             "a"  - open text file for appending
             "ab" - open binary file for appending



We are specifying whether or not we will treat a file as a text file or a binary file, and we 
are further specifying if we intend to write, read, append, or update (write and read). 

The write mode is dangerous but useful. Anytime you open a file in the write mode, the 
old contents of the file are immediately destroyed. If you try to open a file in the write 
mode that does not actually exist, then the open() function will create the brand new file 
with the name requested.

The read mode is very safe, but we will not be allowed to make any changes to a file in 
this mode. If you try to open a file (in the read mode) that does not exist, the open() 
function will return -1, the code for error. 

The append mode is safer than the write mode. It always adds any new material to the 
end of the file so that old material is saved. Otherwise, append is like write, and if the file 
asked for does not exist, the open() function in append mode will create it with the name 
searched for. 

The update mode allows either reading or writing, and opening in the update mode does 
not erase the old contents. New material is appended to the end of the file. The update 
mode will not create a new file. If the file asked for does not exist, the number, -1, is 
returned to signal a file error, so it is good practice to test the file handle to look for -1 
and deal with the error quickly and efficiently. Failing to anticipate this error is one of the 
most common mistakes of beginning programmers. Any file mode may return -1 as the 
"file handle" if there is an error of some kind. Such errors are ignored at your peril. A -1 
means no handle; the attempt failed, usually because the file you expected to find was not 
there after all. 

A file in the text mode has a certain structure to the data. A text mode file is composed of 
string data, but the strings are called lines in the file. Each line ends with an end-of-line 
marker. In Windows and DOS, the end of line marker is a combination of two characters, 
13 and 10 (ASCII) ("\r\n" or {13,10}). The end of the file is the end-of-file marker, 
character 26 (ASCII). Those Euphoria statements designated as text file operations 
assume this structure. Linux is similar, except that the end-of-line marker is the single 
character, ASCII number 10. 

In truth, all files on the disk are binary files. A text file is merely a binary file with a 
common format that is friendly to text material. There is nothing at all illegal with 
opening a text file in the binary mode, but more care and effort are required to deal with 
it. The binary mode is more tedious. Opening a non-text file in the text mode is usually 
disappointing, though. 

A file is a long series of bytes. Each byte is a number from 0 to 255. How the bytes are 
arranged and interpreted is the single difference between a binary file and a text file. 

A Microsoft Word file with a *.doc ending is a text file in name only. In truth, it is a 



densely formatted binary file with a complicated, proprietary format. That is why it does 
not end in *.txt.  An informed programmer can write a program to read Word documents, 
but the programmer will begin with the binary mode. Whenever you need maximum file 
power, or whenever you need to open a file with no preconceptions, or whenever the file 
is a complicated or proprietary structure, the binary mode is the way to go. 

In the binary mode, you are not much concerned about advancing through the file one 
line at a time. Instead, you advance one byte at a time. As you access each byte, the file 
pointer is moved to the next byte. You may deliberately move the pointer yourself to any 
byte in the file with the seek() function. You may report your position at any time with 
the where() function, but the answer comes in numbers of bytes since the beginning of 
the file. 

In binary operations, besides moving one byte at a time, you may move in multiples of 
bytes using get_bytes(). 

The single most important file skill is the ability to write code that persistently watches 
for the end-of-file marker. Continuing past the end of file marker yields meaningless, 
undefined information that is unpredictable and unwanted. 

The choice of input and output statements you decide to use in your file operations 
usually depends most on whether you are treating a file as a text file or a binary file. The 
same input/output statements that write to the screen and read from the keyboard will also 
write/read a disk file. The only difference is that instead of 1 for screen in the first 
parameter, you place the number that is the file handle in the first parameter. The puts() 
function will print a string to a file just as it prints a string to the screen if you put the file 
handle variable, in this case, fh1, as the first parameter. 

     -- print ln to screen
     puts(1, ln & "\n")

     -- print ln to file, fh1
     puts(fh1, ln & "\n")           -- DOS will  convert "\n" to "\r\n"
                                    -- in text files, be sure your string
                                    -- ends with newline character.

The statements that allow you to retrieve one character at a time from the keyboard 
and print one character at a time to the screen may be used for file input and output 
in binary files. Revisit all input and output statements in the Euphoria language and 
rethink how they are useful for file I/O. In fact, these are the file statements to use. 

NOTE: Most operating systems treat devices as files, so most languages can treat devices 
like files.  That is why the form for printing to a file is like the form for printing to the 
screen which is like the form for printing to a printer.  There may be different methods 
for printing, but usually one method is available that mimics the print-to-screen form.

Printing integers and floating point numbers to files yields a series of bytes for each 
number. Floating point numbers will consume eight bytes each.   Use atom_to_64bit() 



functions to create IEEE standard variables for storage and shearing with other 
languages.

Some languages offer another file type called  random access files.  These ar binary file 
methods that handle record variables in a manner similar to many databases.  Since 
Euphoria does not use record variable data type, there are no random access files as such. 
Random access file methods are difficult to learn and use, and they are quite primitive 
when compared to a real database.  In Euphoria, we are offered the EDS database engine 
that comes free with the package as a worthy substitute to random access files.

NOTE:  Later you will see how to cobble your own form of random access file with 
get_bytes().

The EDS database is a much better choice than any random access file method. It is 
equally easy to learn, and the performance, efficiency, and flexibility far exceed what is 
possible from random access files alone. It is highly recommended that you learn all you 
can about the EDS database even though it is technically an optional (free) add-on. 
Euphoria has only binary files for random access, but the EDS database is a far superior 
substitute. 

If you need to write programs that manipulate random access files created and 
manipulated by other programs written in other languages, you can construct routines that 
add this capability to your Euphoria program using binary techniques with byte 
compatibility techniques if you are privy to the file's structure. If you are not privy to the 
structure, then no other language will be any help either. 

A random access file (not available in Euphoria as standard equipment) is composed of 
equal sized blocks of bytes. Each block is divided into predetermined and predefined 
segments. Each segment may be freely interpreted as any native data type, but the match 
must be compatible. The purpose is to combine differing data types with a predictable 
geometry that allows the program to pluck a block from anywhere in the middle of the 
file without searching through the whole file. 

Obviously, you can create your own using binary techniques, but I recommend the EDS 
database instead. 

Strictly speaking, binary mode is random access, but the popular use of the term implies a 
block structure full of aggregate fields with each block the same length and each 
movement is a block at a time instead of a byte at a time. The format must be consistent 
and predefined to be useful. 

With the EDS database, in sophisticated programs, the files will be more compact overall 
and rapid access does not depend on uniform consistency of data. The EDS database is 
also a reasonable substitute for an ISAM database with a built-in index manager. It is 
very sophisticated indeed. 



In the beginning, you will probably use text mode files the most. Most sophisticated 
programs are empowered with some kind of file access, and text mode access offers 
sufficient sophistication for most purposes, and the text mode is easier to comprehend 
because it resembles the most common input and output statements in general 
programming. One merely adds the file as the target and one watches for the end-of-file 
marker. 

The object variable is essential in text file access because the object is prepared to accept 
any data from the disk without any preconceptions. It is prepared for any unexpected 
event. As you read lines from a text file, you are reading in strings, but when you finally 
reach the end-of-file marker (and you will), then you are reading a single atom. The 
variable that receives file input, therefore, should be an object variable because an object 
variable can perform equally as either a string or an atom. After each individual read, the 
object is tested to see if it is an atom. An atom in a text file is a signal of the end of the 
file. 

    object inp

    [ .... ]

    gets(fh1, inp)
    if atom(inp) then  -- end of file
      exit             -- quit the input loop
    end if

   NOTE:  Each string you receive through gets() will end with "\n"
   If you wish to remove the newline character, it is always at the
   end.  In Windows/DOS world the "\n" is actually a two-character 
   series, ASCII ten  plus ASCII thirteen, ({10, 13}).  In Unix/Linux,
   it is ASCII ten alone.

       line = line[1..length(line)-1]   -- Unix/Linux
       line = line[1..length(line)-2]   -- Windows/DOS

           
The gets() function reads one line (string) at a time and advances automatically to the 
next line in order.  That is, the first call retrieves the first string.  The next call does not 
retrieve the first string again.  Instead, the operating system is keeping track of a file 
pointer.  The getc() function that gets a byte each time also advances automatically in the 
same fashion but only by a byte at a time.  The get_bytes() command enjoys the same 
automatic advancement but by a specified number of bytes each time.

NOTE:  These commands are inside a loop because we do not know if the file is long or 
short.  If it is long, we must continue loading piece by piece until the end of the file --  
hence a loop.

It is rare that you are sure of the file contents. The file may have been created by another 
program. For this reason, the most common file operation is to load a entire text file one 
line at a time, eventually into a large sequence, until the end of the file, and then to 



analyze the data to find out what the contents are once they are loaded. Lines become 
strings. The end-of-line markers should be stripped away. You then might edit the strings 
and save them again to edit the file. When you load them in total and save them in total, 
you write with the write mode because you want to erase the old contents. while loops 
are essential for such operations. 

 The file operations just described may be summarized in comments.

     -- while not the end of the file
       -- input the next line into an object
       -- test the object to see if it is an atom
         -- if yes, then exit the while loop
         -- otherwise, append the object to a growing sequence
         -- when the end of file is reached, the entire file is now
         -- contained in a sequence in memory, and the file boundary
         -- was never breached.

NOTE: You might plan a section by writing the comments in advance.  This clarifies your 
thoughts, and the comments are used to accompany the code that you will write  
accordingly.

With binary files, the variable accepting input is an integer because only one byte at a 
time is input. We periodically test the byte for character 26, end of file. With binary files, 
you may want to work random access. You may not want to load the entire file, but you 
may want to change the character at position 127. In that case, you first seek() to 127 and 
print. The one and only character was changed at the exact byte position. You can also 
seek() followed by a read. 

What is not obvious in these operations is the buffer Euphoria employs silently behind 
the scenes. A buffer is a holding area for bytes, and file buffers are typically sized in 
multiples of 1024 to use the disk structure most efficiently. Sizes from 4K to 16K are 
common. When you access bytes from a binary file one byte at a time, there is not one 
disk read for each byte. The first read will scoop a thousand or more, if the file is that 
long, or it will scoop the whole file if it is shorter. Subsequent byte reads are then read 
from the buffer, though it appears to the programmer that they are read from the disk 
surface. A similar situation exists for writes. When a file is closed, all pending writes that 
may be sitting in the buffer are flushed to the disk to ensure that nothing is lost. This 
happens automatically without your awareness. This happens to ensure that disk reads are 
kept to a minimum for maximum speed and minimum wear. 

There is a flush() command that allows deliberate flushing of the buffer manually. 
In typical use, if there is a text file in the current directory that you want to "read", then 
open it with"r": 

    integer fh1
    object line
    sequence pages

    fh1 = open("sometext.txt", "r")-- "sometext.txt" is filname, "r" is 



--readtext
    if fh1 = -1 then               -- -1 only if failed, otherwise 

--filenumber
      puts(1, "File not found\n")
      abort(1)
    end if
                                    -- if you get this far, fh1 is file number

In "r" mode, you can only input the contents of the file. You are not allowed to write to 
the file.  The whole purpose of using text files to begin with is to load them one line at a 
time. This calls for a text-only command, gets(). We no longer use the file name, only the 
file number, here it is fh1: 

    pages = ""                -- initialize preparing for append
    while 1 do                -- we will exit elsewhere
      line = gets(fh1)        -- line is an object; may be sequence or atom
      if atom(line) then      -- when line loads an atom, end of file
        exit                  -- stop scooping at end of file
      end if
      pages = append(pages, line) -- pages accumulates the lines
    end while -- once you finish this loop, you have the entire file in 

--pages
    close(fh1)                -- close it quick

       -- or --

    pages = ""
    line = gets(fh1)
    while not atom(line) do
      pages = append(pages, line)
      line = gets(fh1)
    end while
            
In the above examples, the sequence pages contains the contents of the file when the 
operation is over.

The essential input/output commands that you will mostly likely use for file use (or 
device use) are:

     gets(fh) -- function that returns the next string from a file or 
              -- keyboard
     
  getc(fh) -- function that returns the next byte from the file or 

--keyboard
     get_bytes(fh, i) -- returns a specified number of bytes
     puts(fh, str) -- prints string, str, to file or screen
     puts(fh, 'a') -- prints a single byte to the file or device

The major alternative with text files is the path. If the file you seek is elsewhere, open 
with the complete path. Remember, use "\\" instead: 

    fh1 = open("c:\\mydocs\\olddocs\\inventory.txt", "r")



If you loaded a text file in order to change or update it, then your changes are made in 
memory, in pages. To place your changes in the file, you will open in write mode. You 
already closed it above. Write mode will destroy the current contents of the file, but you 
aren't worried because you have them currently in memory with your changes. Now: 
   
    fh1 = open("somettext.txt", "w")
    if fh1 = -1 then
      puts(1, "Could not open file\n")
      abort(1)
    end if

To place lines in the file use the puts() command, the same command used for writing to 
the screen. Instead of 1 as the first parameter, it is the file handle in fh1. 

   -- DO NOT try to puts() nested sequences
   for i = 1 to length(pages)  -- This may be longer or shorter than 

--before
     puts(fh1, pages[i]& "\n")       -- but you want to save the whole 

--thing
   end for
   close(fh1)                  -- close it quick

When you open a binary file, you have no preconceptions, and you want every character 
treated equally, end-of-line, end-of-file, whatever. You will probably load one character 
at a time: 

    integer fh2, c, char, at
    sequence stream, chunk

    fh2 = open("somebytes.dat", "ub")  -- Update Binary is popular mode

    stream = ""                        -- initialize preparing to append
    while 1 do                         -- exit this loop elsewhere

      -- file pointer advances with each get, here one at a time
      c = getc(fh2)                    -- get next character
      if c = 26 then                   -- if character 26, then end of file
        exit                           -- don't go past end of file
      end if
      stream &= c                      -- otherwise accumulate bytes in 

--stream
    end while

The prior example shows how to load the whole file. If you wanted only the character 
found at location 1043 then: 

    seek(fh2, 1043)         -- move file pointer to position 1043
    c = getc(fh2)           -- get the one byte there

When time comes to replace the whole file with new, changed file. Notice that puts() is 
equally useful for binary and text files: 



   seek(fh2, 1)                  -- put file pointer to beginning of file
   for i = 1 to length(stream)   -- may longer or shorter than before
     puts(fh2, stream[i])        -- putting one character at a time
   end for
   close(fh2)                    -- close it quick

If you only want to change the character at position 1043: 

   seek(fh2, 1043)               -- again, put pointer at 1043, to be 
--sure

   puts(fh2, char)               -- put what you got from  char
   close(fh2)                    -- close it quick

Occasionally, when you are loading a binary file, you may want to load a fixed chunk of 
bytes at a time instead of one at a time. That is what so-called random access techniques 
do.  For this, use get_bytes(): 

    stream = ""
    chunk = ""
    while 1 do                       -- will exit elsewhere

      -- file pointer moves with each get, here it advances 144 places
      chunk = get_bytes(fh2, 144)    -- get next 144 bytes into chunk
      stream &= chunk  -- append the way you like, chunk might be empty,ok
      if length(chunk) < 144         -- won't go beyond end of file
        exit                         -- stop gulping bytes past end of file
      end if
    end while

The last gulp might be less than 144 (or whatever fixture) because get_bytes() won't go 
beyond end if file.  Eventually, get_bytes will return empty sequences.

To put data in binary files in fixed-number chunks (just like so-called random access), 
puts() is again useful. 

   if length(chunk) > 144 then   -- be sure not longer than 144
     chunk = chunk[1..144]
   end if
   at = find(26, chunk)          -- don't put eof marker accidentally
   if at then                    -- or not, it depends on your intention
     chunk = chunk[1..at-1]
   end if
   puts(fh2, chunk)              -- put it now, wherever you are in the 

--file

====================================================================
  REMEMBER:  Use a separate variable to load a part at a time and a 
separate variable to accumulate the loading.  If it is a text file, use 
an object to load each line, so it won't fail when it loads an atom at 
the end of the file.

  AND REMEMBER:  You can't open a file for reading "r", and then open it 



for writing "w" without first closing it.  You may get a new file 
number every time; you may not.  Its up to the operating system.
====================================================================

      SUMMARY
      =======

          get()       - gets a Euphoria object, {,,,}
          getc()      - gets one byte at a time, after ENTER
                        returns -1 after CONTROL + Z
          gets()      - gets one string at a time, string has "\n" on end
          get_bytes() - gets one or more bytes at a time.

          print       - prints a Euphoria object in object form, {,,,}
          puts()      - print bytes or strings
          printf()    - formatted printing
          sprint()    - returns string version of sequence.

You cannot be interested in files without being oriented to directories. Euphoria has a 
rich set of commands for dealing with directories. You can move among the directories 
calling where to go or reporting where you are. You can get from the operating system 
the current location. You can load all the file names and file statistics in any directory 
you wish. You can search for multiple file names that fit a wild card search pattern, or 
you can search for one at a time by name. You can even use walk_dir() to search an 
exhaustive pattern among directories and their sub-directories using a custom operation 
on each file that fits the target pattern. See search.ex in c:\euphoria\bin. 

   dir()

The dir() command is a function that returns either all the files in the named directory 
(defaults to current directory) or only those files specified. If dir() returns an atom, the 
search came up empty. If multiple file names and statistics are returned, dir() returns a 
sequence sophisticated enough to hold the material. The length of the returned sequence 
is the number of file names that fit the search pattern. Each sub-sequence within each 
nested sequence will contain separate statistics about each file. 
In truth, you will rarely need all that information, but you can use subscript notation to 
access only the statistics that you need. See library.doc for details. 

   current_dir()

You usually know where you are, but the program you finally distribute may not once it 
is installed at will on the user's computer. Using this command, your program can be 
informed about the current path. It is a function that returns a string naming the current 
path. 

   walk_dir()

If you need to run an exhaustive operation on a large number of files that meet your 
requirements, in sub-directories, too, then this command is your ticket. You can write a 
procedure to your specifications that does what you need to each file, and walk_dir() will 



then empower your code to operate on multiple files. See search.ex in c:\euphoria\bin. 

   system()

Use this command to let DOS do the work. Using this command runs a separate version 
of command.com that lets you use DOS commands in quotes. When finished, 
command.com is unloaded and your program resumes. You can also use this command to 
run another program. Your program is suspended in the mean time, but it resumes when 
the other finishes. 

   system_exec()

Many programs are designed to return an exit code when they finish. When they run well 
and finish successfully, zero is returned, but when there is trouble, another number is 
returned. Your programs in Euphoria can do the same when you use abort() with a 
parameter other than zero. system_exec() allows you to receive that exit code when the 
branched program finishes. Your program can then detect if everything went well while it 
was away. You can also receive exit codes from DOS operations. 
This is always a good place to consider getting input from the keyboard. gets() gets a 
string, but looks for CONTROL + Z to determine string's end. prompt_string() gives 
prompt, gets string. getc(0) gets byte from keyboard. get_key() gets next byte waiting in 
buffer or next byte typed - NO WAITING. wait_key() waits for next byte to get byte 
(compatible with multitasking). getc(0) also waits for keyboard. get_key() is usually used 
within a loop to poll for responses. 
The locking or sharing of files is under the direction of the operating system. Most file 
openings are in exclusive lock mode. If you try to open a file already open, it will be 
disallowed in this mode. 



Control Flow Structures 

Even though it is very easy to write programs that always proceed exactly the same, it is 
more useful to control and change program flow. While a program is running, the order 
of program statements can change drastically based upon logic and its response to the 
immediate situation. The if statements in their various forms are very useful in this 
regard. Some if statements can be very involved. They can be expanded or nested. 

     if A<= 50 then
       if B <= 50 then
         puts(1, "A <= 50, B <= 50\n") 
       else
         puts(1, "A <= 50, B > 50\n")
       end if    
     else
       if B <= 50 then
         puts(1, "A > 50, B <= 50\n")
       else
         puts(1, "A > 50, B > 50\n")
       end if
     end if

Larger block statements can be employed. 

     if X > 0 then
       puts(1, "X is positive\n")
       PosNum += 1
     elsif X < 0 then
       puts(1, "X is negative\n")
       NegNum -= 1
     else
       puts(1, "X is zero\n")
     end if

Compound expressions expand what the statement can do. 

     if find(compare(C, "A"), {0,1}) 
     and find(compare(C, "Z"), {0,-1}) then
       puts(1, "Capital letter\n")
     elsif find(compare(C , "a"), {0,1}) 
     and find(compare(C, "z"), {0,-1}) then
       puts(1, "Lowercase letter\b")
     elsif find(compare(C, "0"), {0,1}) 
     and find(compare(C, "9"), {0,-1}) then
       puts(1, "Number\n")
     else
       puts(1, "Not alphanumeric\n")
     end if



At most, only one block of statements is executed, even if more than one condition is 
true. For example, if you enter the word "ace" as input to the next example, it prints the 
message "Input too short" but does not print the message "Can't start with an 'a'". 

     check = gets(0)   -- keyboard enters string
     if length(check) > 6 then
       puts(1, "Input too long\n")
     elsif length(check) < 6 then
       puts(1, "Input too short\n")
     elsif equal(check[1], "a") then
       puts(1, "Can't start with an 'a'\n")
     end if

Here is another example of nesting. 

     if X > 0 then
        if Y > 0 then
           if Z > 0 then
              puts(1, "All are greater than zero\n")
           else
              puts(1, "Only X and Y are greater than zero\n")
           end if
        end if
     elsif X = 0 then
        if Y = 0 then 
           if Z = 0 then 
              puts(1, "All equal zero\n")
           else
              puts(1, "Only X and Y equal zero\n")
           end if
        end if
     else
         puts(1, "X is less than zero\n")
    end if

 -- or --

   TestValue = get(0)  -- get number from keyboard
   if find(TestValue, {1,3,5,7,9}) then  -- search a list
      puts(1, "Odd\n")
   elsif find(TestValue, {2,4,6,8}) then  -- search a list
      puts(1, "Even\n")
   elsif TestValue < 1 then
      puts(1, "Too low\n")
   elsif TestValue > 9 then
      puts(1, "Too high\n")
   else
      puts(1, "Not and Integer\n")
   end if

In many programs, the entire program is supported by a while-loop that has a 
complicated if..then..else that branches to one in many routines. When the loop finally 
exits, the program is over. All or none of the routines may execute based upon the 



changing variable values. 

     while 1 do
        retval = get(0)
        if retval = 1 then state_of_business() then
        elsif retval = 2 then pause_for_input() then
        elsif retval = 3 then notify_network(today) then
        elsif retval = 4 then check_clients_file(X, Y) then
        elsif retval = 5 then wrong_choice() then
        else
          exit
     end while
     abort(0)



Scope 

Scope refers to the territory of variables, procedures, and functions. It refers to the 
lifetime of variables. In Euphoria, there are three levels of scope: global, local and 
private. Look at the following program. 

<Program>------------------------------------------------------------

include get.e

global sequence glo   -- This is a global variable
atom num                  -- local variable
sequence str, arr         -- local variable

  -- private not valid here
  -- local and globals above valid here

  procedure get_better()    -- get_better() is NOT a global procedure
  integer cnt               -- cnt is private variable inside procedure
     -- {....}              -- local and globals also valid here
  end procedure             -- cnt ends here

  procedure main()          -- main() is NOT a global procedure
  sequence str              -- str is private variable inside procedure
     -- {....}              -- different variable from local str
                            -- local str is ignored
  end procedure             -- private str ends here

  -- private not valid here
  -- local and globals above valid here

  main()

<End 
Program>------------------------------------------------------------

Variables declared inside subroutines are private. They last only so long as the subroutine 
is called. The are created when the sub begins, and they are automatically destroyed when 
the sub ends. They are not seen or recognized by any code outside the subroutine. A 
professional programmer will try to make as many of the program's variables private 
variables wherever possible by declaring them inside subroutines if that is the only place 
they are needed. 

Variables declared at the top of the program outside of any subroutines are local 
variables. They are seen and recognized everywhere in the program module (from there 



to the end of the file), but they are not seen or recognized in any include files that may be 
included. 

Variables declared at the top of the program outside of any subroutines that are declared 
with the word, "global", are global variables. They are seen and recognized everywhere 
in the program and in any include files past the point of their declaration. 

If you are writing code for an include file, only global variables in the code will be 
recognized by the programs that include the file. Local and private variables in an include 
file remain invisible and invalid to any program that includes the file.   The include file is 
included at the top of the program, so any global variables or subroutines in the include 
file have maximum scope.  A wide scope is the only way to share variables and 
subroutines between include files and programs that include them.

If all the variables in your program were global, there would be no scope issues to think 
about, but there would be vulnerability and limitation in the program design. It is a bad 
idea to make all variables global just to avoid scope issues. 

NOTE:  Think before you declare anything "global".  Chances are, it is better not to  
make it global except for the mentioned exceptions.

It is always good practice to make a new variable's scope as small and limited as possible. 
Make as few variables global as possible. 

This is not obvious now, but as you design large and complicated programs, the benefits 
of this 
approach will be revealed. 

Also, in Euphoria, a variable is only seen and recognize in the code that follows its 
declaration, so if a variable is declared later in the code, it will be invisible and invalid in 
the code prior to that even if it has a wide scope. 

When you try to use a variable beyond its scope, Euphoria interprets it as invalid and 
undeclared. Its use will trigger an error as if the variable or subroutine did not exist. 

Memory management is good practice for any programmer, but Euphoria makes it easy 
and reliable. However, you do your part to increase the efficiency of your programs when 
you use private variables as much as possible. The scope of a variable not only specifies 
its territory but its lifespan as well. Private variables consume memory only so long as 
they are needed. The results are nearly automatic if you have properly assigned scope to 
begin with. 

Remember: You define scope by where you declare the variable as well as with any 
descriptors like "global".

Subroutines also have scope, either global or local. This becomes important to libraries 



(program code with the *.e or *.ew extension [*.eu in Linux]). You can create your own 
libraries (include files) by starting a new program. Place subroutines (procedures and 
functions) in your library that you want your library to have, but the only main executable 
code in the program is test code for testing the routines. Once your testing is finished, 
erase the code beyond the subroutines and change the name to a new library name. 
Libraries for DOS have *.e endings in the names and libraries for Windows end in *.exw. 

However, none of your subroutines can be shared with another program when your 
library is included unless some of the subroutines were declared with the "global" 
keyword. When making a library, be sure to declare all procedures and functions that you 
want to share with other programs with global: 

    global function do_my_thing(integer self, object parm)
       -- [ *some code here* ]
    end function

    GLOBAL!!! function

NOTE: The library parts share with each other in the same way different parts of a 
program share.  They are "local" to each other, but they are private to the program that 
includes them.  Those items that are global are shared outside the library as well.

Only the global routines in an include file can be called by the other program that 
includes the file. This offers vast possibility to enforce controlled and designed scope. 
The rule is: hide as much code as possible. Let any other code know only what it needs to 
know about the code and data that are shared. 

NOTE: This tendency to hide one part from all the other parts gives rise to abstraction.  
With extra abstraction, you deal with the big picture without being distracted by 
extraneous details that have been already handled.

Also any global variables in the library will be shared, which may or may not be a good 
thing. Consider carefully which variables need to be global and hide as much as possible 
from the programs that will later share the library. 

You can also take this a step further with *namespaces*. A namespace identifier follows 
the rules for variable identifiers (names). When you put an include statement at the top of 
your program, you can add "as such_ n_such" to it: 

    include mylib.e as john

Later, when you use something from the library, it must begin with the namespace 
identifier and a colon (:). 

    john:calc_num = 890.23

      - or -



    john:run_swap(4, up_count, biquad)

This adds new possibilities for program scope, particularly for large projects. This can 
also be used to disambiguate variable names and routine names. Two variables can have 
the same name and be different if one variable is in a library that was loaded into a 
namespace. 

    total = check + gather + other      -- total local to program only
    john:total = fee + options + other  -- total local to library, but
                                        -- shared by namespace without
                                        -- a need to rename the variable

Professional programmers working on large projects with teams of programmers will 
build libraries or objects of code that are useful again and again. Any code that may be 
useful in many other programs should be in a library, but not knowing what the future 
holds means that naming conflicts can occur when future code uses the libraries. By 
using the smallest scope possible whenever possible and by using namespaces, such 
conflicts can be avoided or kept to a manageable minimum. 

The pain and misery of past mistakes cause professionals to be very strict about scope. 
They learn to think about scope and keep it within the smallest boundaries possible. It is 
good to start early learning the habit. 



Databases 

As a student programmer, you are familiar with disk files of various types, but to learn 
about databases, you must understand the difference between a database and a file. The 
definition of a database is not very strict and it has evolved over time, but it includes files 
with a system or architecture that increases the efficiency of storing and retrieving data 
from a hard disk. Files that are not quite databases are merely flat files. 

Databases include files, but the files have a special structure and a manager program 
(engine) that can search files quickly and efficiently. Usually, a special smaller file called 
an index is used. Sometimes all files and indexes belonging to the files are meshed into a 
single huge file with internal compartments. 

An index works like a card catalog in a library. It is usually a smaller file with a look-up 
list. In simplest terms, an index contains a list that cross references each record with a 
record number or disk location. It is quicker to search the index for the clue. Once the 
record number or disk address is known, it is very, very quick to retrieve the information. 
Indexes have a well-deserved reputation for speeding up data access.

 NOTE: It is often not understood how quickly an item on the disk can be retrieved if the 
address or record number is known.  It is virtually instantaneous.  So, the object becomes 
to find the address or record number as quickly as possible which is what an index does.

A single database file is made of many records. Usually each record has a similar 
structure. It is the similarity of the records that makes swift navigation possible. Usually 
such a file is quicker and easier to search than a flat file. We refer to this structure as a 
table. A telephone book is structured like a table. 

There are several famous database products that enjoy market dominance and that are 
used in thousands of businesses and institutions. Such champion databases are very 
expensive and very complicated, and their level of complexity and sophistication is not 
always needed in many situations. A good database skill is the ability to match an engine 
with an application.   With the very best databases, an extra well-paid employee must be 
hired just to manage the database.  The very best databases are often not required in the 
small to medium business world, but much of what you read about database technology is 
aimed at the largest organizations.

Most really useful business programs need some form of database in the structure of the 
program. Professional programmers can attach their programs to one of the big database 
engines, but there is a price to pay for this. It is often better to use a less sophisticated 
engine and enjoy a better economic return and a faster development cycle. 



The EDS database engine is supplied free from Rapid Application Software when 
Euphoria is downloaded or installed. This database is frequently powerful enough for 
many ordinary applications. It is compact in size and easy to operate. The code can be 
added to your own program code to make your programs much more powerful at no extra 
cost. 

The EDS database is similar in performance to an ISAM database with an index manager. 
EDS uses the first column (field) as an index that is sorted and searched with a binary 
search algorithm.  It is difficult to see any difference in this level of performance and that 
of a top-notch ISAM engine. 

If you may need more than 2 billion records per table, then you should consider some 
database other than the EDS database, but 2 billion records is a lot, and the EDS database 
can be very small when necessary. 

If you need to share the same database files with many operators simultaneously, you 
may need a more sophisticated database engine. The EDS database cannot lock a single 
record, but it can lock the entire table. 

Other programming languages usually support random access files, but Euphoria does 
not. The EDS database is a very good substitute for random access files. 

ODBC was an initiative by Microsoft to make all database engines accessible to all 
development languages.  It has matured and is now quite excellent.  It is based on the fact 
that most engines are relational types that understand Structured Query Language.  Using 
an ODBC library available from the RDS website, you can connect to a .DLL that allows 
you to write database applications in Euphoria for every major Windows database engine 
and most of the minor ones.  You should bone up on relational database technology and 
SQL in order to capitalize on this, but through ODBC, Euphoria is a major player.  This 
is serious business computing power that competes well with all other technologies.

You can work through a programmer's Application Programmer's Interface (API) with 
most products as well.  There are libraries and .DLL's that allow powerful use of popular 
tools like MySQL and Advantage Database Server (not to mention many others).  It links 
Euphoria to the products as if they were designed for each other.  In theory, this is higher 
performance than ODBC, but in practice there is not so much noticeable difference. 
MySQL and Advantage Database Server are two such high performance products that are 
very economical without sacrificing much quality or performance.  Most API's are 
published for C/C++, Delphi, Visual Basic, and the various .NET products, but an 
experienced programmer can alter these files to Euphoria code, and many have.  You 
may find such tools available for free from the RDS website.  Without much effort, I 
translated an Advantage Database Server include file (*.h) for C/C++ into a Euphoria 
include file that allows Euphoria to operate the API with equal ease.  This was possible 
due to my familiarity with C and due to the design of Euphoria.



The EDS Database 

RDS, the makers of Euphoria, offer the EDS database engine, written in Euphoria code, 
to replace and surpass the typical random access file mode. It is a true database engine 
that is speedy, flexible and efficient with all but the most massive corporate files. In small 
businesses, it is unlikely that a database will grow so large that it overwhelms the 
capabilities of the EDS database.   In any case try it.  You can always step up later.

The EDS database is easier to learn and easier to master than random access file methods. 
To add this capability to our program, we must include database.e include file, which 
should be installed first in the include directory. Once this file is loaded, the engine is on 
board, and the commands are available for use. First, the commands must be learned as 
new additions to the language. 

    NOTE:  database.e should already be installed in the include directory
    with this installation.

    NOTE:  With any include command at the top of your code, Euphoria
    looks first in the current directory.  If the file named is not
    found there, then Euphoria looks into the c:\euphoria\include directory.

A basic database is a table with one or more records, and each record has one or more 
fields. The records are often also called rows, and the fields are often called columns. A 
telephone book is a good example of a table. Like a typical database, each record in the 
phone book is a different customer. Two customers may have the same name but not the 
same phone number or address. The fields of each record are name, address, and phone 
number. There may be a million records, but each record has a few fields only. 

The distinguishing field is the phone number. No two customers have the same number in 
simple theory. In practice, we may have different names listed per household, but in our 
simple example, we will ignore that. For now, accept that each customer has a different 
phone number. 
This qualifies the phone number field as a primary field. The name field is not reliable as 
a primary field because two customers may have the same name. If we want maximum 
reliability, we may assign each customer a customer ID number that is guaranteed 
unique. When we do that, we have added another field that will become our primary 
field. Another field that is important or distinctive, though not exactly unique, might be 
called a secondary field. The name field for instance. 

With the EDS database, we are free to use a different number of fields per record, but that 
is not generally done. If we assign the same number of fields and the same structure to 
each anticipated record, then we need to identify if any field qualifies as a proper primary 



field. If not, then we will invent one--perhaps a record ID number. If the records hold 
customers, then it is a customer ID. If the record holds students, then the number is a 
student ID. 

In EDS, this field, the chosen primary field, will be called the key, the value found in this 
field in each individual record will be called the key data. The remaining fields will be 
called record fields and the data they contain are record data. 

We use the key for searching, but otherwise it is not different from the record fields. We 
will be lucky if we have a primary field to choose from without creating our own because 
the database will then be smaller overall. 

Every record has a number that is the simple count of records from beginning to end. 
This may be called the record number or the physical number. The first record added to 
the file will always have record number one, and the last record added to the file will 
always equal the number of records in the file. When we insert a new record, it will be 
appended to the end of the file with a record number one higher than the previous highest 
number. 

File operations concentrate on the key and the record number. If we always knew what 
record number we needed in advance, we would not need a key. The key is a shortcut to 
finding the record number. ONCE THE RECORD NUMBER IS KNOWN, RECORD 
ACCESS IS NEARLY INSTANTANEOUS. This is true no matter how large the record 
number because the access method is random access. 

EDS allows us great flexibility and freedom. We may use any Euphoria data type as the 
key, or we may use several, but usually we want the smallest key that can do the job. 
EDS allows any data type as the remaining record data, but typically we use a sequence 
with several elements. Each element in the sequence will then be a different field. EDS 
allows any field to be any length and any data type, but typically we want the same 
number of fields in each record and every corresponding field should be the same data 
type from record to record. We may mix data types, but the third field in each record 
should have the same data type, and the first field in each record should have the same 
data type, and so on... 

Ideally, the key is one of the fields of interest as well and, ideally, it is a fairly small field. 
The typical database will have one small key and several fields in the record data section. 
Most of the data is record data. We use the key to get key data, but most of all, we use the 
key to get the record data. 
If we want to simply load the whole database into memory, no key search is required. We 
simply request the number of records ( returned by db_table_size()), and using that 
number, we make a for loop that loads each and every record by number from beginning 
to end (key and record alike). This is not usually done, however. Most often, we will 
search for one record in many, and that is what the key is for. 

The simplest database that we have described in best called a table. A more sophisticated 



database may have more than one table. 

Before we use the command to create a database to begin with, we should plan and think 
about the database design. We should plan what data structures will be used for the key 
and record data, and we should identify our primary key. Once the structure for a single 
record is determined and defined, then we are ready to create a table. Before we can add a 
table, we must create a database to hold it. The database may have only one table, or it 
may have many, but we will design and add them one at a time. The first time we open a 
database is when we create it. Thereafter, we will simply open. 

We must create a database before we can add the first table. EDS requires a name and a 
share mode. The second parameter is typically DB_LOCK_EXCLUSIVE to indicate the 
exclusive mode. The first parameter is the name you have chosen in quotes and possibly 
combined with a path. A number is returned signaling either success or some kind of 
error. If an error is returned, the database was not created. Once created, it is 
automatically open. Once open, we may create a table. The first time we select a table is 
when we create it, but thereafter, we will simply select it. There is no command for 
opening a table; you select one among those in the opened database. The 
db_create_table() command requires only a table name that we have chosen in quotes. It 
will return a number that either indicates success or some kind of failure. If it does not 
return success, then the table was never created. No two tables in the same database may 
have the same name. Once the table is created, we are free to begin entering data one 
record at a time, and we may add records periodically over time. 

The data in the key must be different for every record. If two records have the same key 
value, a database error will occur. Do you see why you need to think the design over 
first? The key functions as an index, and the search is a very fast binary search. 

To add the next record, a key search is not required because EDS will merely add it after 
the last record, so that it now becomes the last record. This process is called an insert. We 
are also free to delete any record. 

What follows may be an extended period of data entry where we add, perhaps, hundreds 
of records. If we have data already stored in a consistent format in a text file, we may 
write a simple program that reads the text file, converts the data, and places it in 
individual records in our new EDS database. A well designed database full of data is 
usually very valuable to the creator. It may have a lifespan of many years where many 
more records are eventually added. 

If our database is meant to be a log that accompanies one of our programs, then we may 
begin running the program that opens the database and stores each logging as an 
individual record. 
If we want, we may also add new tables to the same database. 

The primary actions in database terminology are insert, delete, seek, update and query. 
Before we can perform these actions, we must open the database and select the table. 



Once we have selected a table, all subsequent database commands assume this table until 
another table is selected. Only one table may be selected at once, and it is the table last 
selected that is the target of the EDS commands. 

To add a new record, we insert with db_insert(). To delete a record, we delete with 
db_delete(). To search for a record number, we seek with db_find_key(). To update the 
record data, we use db_replace_data(). We do not update the key data. The only was is to 
delete the record and create a new one with the same record data and a new key. We 
often seek in order to retrieve and read the data that is stored. 

The db_find_key() function expects a key data parameter matching the key's data type. 
When the key is quickly found, a record number is returned. We then open the record 
with its record number. The db_find_key() is quick, but the record location using a record 
number is nearly instantaneous. 
If a seek fails to find what we want, we may try a find. A find is more time consuming, so 
finds are not frequently done, but a find is thorough. With find, we open the database and, 
starting with the first record and continuing until the last, we search every field in record 
data looking for a match. There is no database command for this however; we have to 
write the code ourselves with a for loop using db_record_data() to search for the item we 
seek. In this case, we use db_table_size() to acquire the the number of records in the table 
being searched. 

    for i = 1 to db_table_size()
       if find(our_key, db_record_data(i)) then
          buffer = db_record_data(i)
          exit
       end if
    end for

In ordinary operation, the create commands are used only to build the table the first time. 
Such commands may be in a separate utility program from the main program. Once 
databases and tables are created, it becomes a matter of opening and selecting. You do 
not open a table, but you select it. You may open more than one database, in which case, 
you must select the one you need as you need it. Once the database is selected, you then 
select a table. 

Most operations on a working database will be db_find_key(). Occasionally you will 
delete and insert. The function db_find_key() returns a record number that may then be 
used for other critical operations. It is the primary concern of db_find_key() to return a 
record number. 

To view the contents of a record, db_record_data() and db_record_key() require a record 
number. db_delete() requires a record number. db_replace_data() requires a record 
number. A record number is not needed for db_insert because the new number is chosen 
by the EDS engine. 

Once a working database is in place, a typical work session will follow these steps: 



    -- We must find a record based on some key.
    rec_num = db_find_key(our_key)   -- rec_num contains the record 

--number if
                                     -- found
    seq = db_record_data(rec_num)    -- seq contains data from record 

--fields

    -- We then inspect seq to see what we found in the record
    -- We don't need to load key data because we have that already
    -- If we make changes to the data we found, to move the changed
    -- data back to the record we:

    db_replace_data(rec_num, seq)   -- replace record with changed data



File Servers 

The file server database is an economical type that is somewhat more sophisticated than 
the EDS database, but not as sophisticated as a client/server database. In a business 
system with many workstations, the database files that are shared by all workstations are 
stored on a single computer called a server. The files themselves are not locked, but 
portions of the file, records for instance, can be locked. This is important so that no one is 
changing the data in the same record as you at the same time as you. This keeps the data 
secure and accurate. 

The file server database can serve ten and up to fifty users at a time, but usually, the 
system should be re-indexed at least once a day. It will cause more network traffic than 
its more sophisticated cousin, the client/server database. 

Foxpro and the various Xbase versions like dBase, Clipper, Visual Objects, Harbour, and 
Flagship are file server types. The Access database is also this type of database. 



Linking to DLL's 

The term DLL means dynamically linked library, and such libraries are the stuff that 
Windows is made of. Throughout any Windows computer are many of them. They 
resemble the SO files found on Linux and Unix systems. DLL's contain code that is to be 
shared by more than one program, code that is reused. They are very similar to 
executable files, but they can never run alone, they are always running in support of an 
executable file specifically designed for them. 

Being able to program with DLL files is an important skill to learn when writing 
Windows programs, but there are many other advantages to DLL's. There are DLL's that 
are widely available, some of them for free, that can be used by programmers to avoid 
writing difficult code. When one uses DLL's, one is borrowing the programming work of 
others. 

One cannot use a DLL if the author does not allow it, but many DLL's are so designed 
that they offer many services and functions to those programmers who want them. But 
there is a skill to learn first. 
Most DLL's for Windows were written in the programming languages C or C++. One 
does not need to know the C language, but it is a big help to know a little. 

C and C++ have more data types than Euphoria, but Euphoria has tools that allow 
Euphoria programmers to merge with code written in C or C++. Euphoria programs can 
use C data and C pointers and transform them to Euphoria variables. C and C++ are so 
prevalent that most other programming languages have similar ways of conforming. It is 
this conforming that makes DLL's so practical. 

Powerful code tools are available in .DLL form, and they are stored as procedures and 
functions available for linking.  Euphoria offers linking commands that allow Euphoria 
programmers to call the procedures and functions in their Euphoria programs.  It easier if 
you are familiar with the C data type, especially those that are different from Euphoria 
types.  There is a way to handle every kind, even pointers.

Yes, Euphoria allows pointers though one of the strengths of Euphoria is that you rarely 
need them.  Pointers are variables (usually 32-bit long integers) that hold the dress of data 
in memory.  Going directly to memory allows swift algorithms, but it is a dangerous kind 
of programming that can cause very, very difficult bugs, that is why we avoid them.  The 
C/C++ language makes extensive use of pointers, especially to pass parameters by 
reference.  The .DLL that you use, will surely pass a pointer to Euphoria.  Since the 
address is a number that may exceed the capacity of a Euphoria integer, Euphoria must 
store pointers in an atom variable.  Euphoria then references the pointers by peek() or 
poke() statements.



The C language, like many languages has 4-byte, 32-bit integers, signed and unsigned, 
called long and ulong.  The C language uses IEEE 64-bit floating point types called 
double (for double precision).  C has special way of dealing with strings.  C strings end 
with null to indicate the end of the string.  The C language offers a 32-bit floating point 
variable called a float.  In Windows, even the C integer is 32-bit, 4-bytes.  Pointers, 
which are addresses are long integers, so pointers are 32-bit 4-byte values.

int_to_bytes() is a Euphoria function that can convert integers and atoms to 4-byte 
integers compatible with C.

bytes_to_int() is a Euphoria function that can convert 4-byte C integers, int, long, ulong 
to Euphoria atoms.

atom_to_float64() is a Euphoria function that can convert an atom to a C-type IEEE 64-
bit (8-byte) floating point value.

float64_to_atom() is a Euphoria function that can convert a C-type 64-bit float (see 
above) to a Euphoria atom.

In C, strings are actually pointers to strings in memory.  In Euphoria, allocate_string() is 
a function that will return the pointer to a string in memory, this pointer may be needed to 
communicate with C-based code.  The function allocate() will return a pointer to any 
portion of memory that is reserved for such.  Pointers must be freed after use; do this with 
the free() Euphoria function.

Rudimentary C tutorials are widely available, and learning a little of the C language, 
especially the data types, is advisable if you want to advance to advanced programming 
topics.  The good news is that most of the parameters passed back and forth will be 4-
byte segments.

If you know to what purpose the four bytes are reserved, you may extract them in 
Euphoria form with the various peeking commands (for peeking into memory).   If you 
know the four bytes in memory are an unsigned long C variable, you can peek4u() into a 
Euphoria atom.  If the four bytes is a signed C long, then peek with peek4s(). Or you can 
always peek a specified number of bytes with peek().



Advantage Database Server

This product is not affiliated with the makers of Euphoria, and I have no affiliation with 
them, but I mention them here honorably because programmers should know about good 
products.  This is a database server that performs like the very best though it might not be 
ideal for the very largest corporations.  It is perfect for any small to medium size 
business.  It is priced much lower than its famous competition, and no extra employees 
need be hired in order to administer it.
 ADS, as it is affectionately called, is an outgrowth of the Xbase world that began with 
dBASE and evolved to Clipper, FoxPro, Recital, Harbour and others.  These products are 
all dialects of the same Xbase language and structure.  Older *.dbf databases can be 
easily updated to Advantage Database Server.  Legacy Xbase skills can be employed and 
exploited in newer modern development.
This server is an SQL relational server, but it also offers the navigational features of a 
great ISAM engine which will be familiar to anyone who has developed applications and 
databases in dBASE, Clipper or FoxPro.  The engine is available free as a .DLL called a 
Local Server (AdsLoc32.dll).  This allows the development of file sharing databases that 
may be later upgraded to client/server databases with little change.  With the local 
server .DLL, you can develop applications that have .dbf databases or that share 
databases with other Xbase products.  AdsLoc32.dll is free to own and free to distribute.
The Local Server is not adequate for mass client/server duty, but it allows programmers 
to become familiar with the company and its technology.  It is sufficient for file sharing 
database systems.  It shares with other Xbase products.  If you elect to go fully to 
client/server technology, you must purchase the server from its makers.  You can design 
your modest systems so that the later shift to client/server requires no change in code and 
no recompile.  The strategy is outlined in the API.



MySQL

This is a popular and powerful database engine that can be used free of charge in some 
situations.  It is economical and reliable regardless which situation you elect for yourself. 
By offering the product free, many programmers have used it, are familiar with it, and 
this kind of sponsorship has enhanced its reputation with corporations.  It compares with 
ADS for quality and suitability, and it is widely employed.



Firebird Server
The Firebird Server (or Interbase 6.0) is the best choice for most situations today where 
the highest quality database performance and reliability is needed.  Despite the fact that it 
is free of charge and easy to download from the web, it is a match for the very best 
products available, even Oracle and MS SQL Server.  In systems with 200 worstations or 
less, there is no database engine faster.  In any system, few database engines can match 
Firebird for power, features, completeness and reliability.  So what is the catch?  There 
doesn't seem to be one.  It is a small download or installation, and it is easy to configure 
for immediate use.  It configures in a variety of ways in order to be flexible, and it is even 
available as an embedded system.  It is based on technology that is tested and proven in 
many real installations for more than twenty years.

It is probably best to use ODBC with Firebird (drivers are widely available), and ODBC 
Euphoria code is available for download at the RDS web site.  The code must be altered 
for Firebird, and the DNS connection must be made like all ODBC applications, but this 
is a good way to learn ODBC technology which should be learned in any case.

The options available for use by Firebird is so complete and powerful, that it qualifies 
fully as an enterprise database server for all demanding situations.  In advanced corporate 
software architecture, it can fully contain the business rules within the database engine 
with stored procedures, triggers (before and after), exceptions, checks and events.  It has 
very sophisticated transaction abilities.  There is are none better, and it is free of charge. 
Why use any other?

In many large and medium-sized businesses today, you will find either Oracle or MS 
SQL Server as the database server in a client-server system with programs written in a 
variety of languages that connect to the server by ODBC.  With Firebird replacing the 
others, you will still have cutting-edge technology that can be integrated with your 
Euphoria programs.

ADS offers uniqueness and value for the money.  MySQL is a relibable product that is 
currently popular and inexpensive, but Firebird is the best choice for most situations. 
Whatever you choose, knowledge of relational databases and SQL are essential. 





Program Planning 

Structured procedural programming languages demand a top-down approach, but the 
planning is critical. Divide the whole job into smaller jobs, and the smaller jobs into still-
smaller jobs. Subroutines, functions and procedures, should appear above the code where 
they are invoked. 

An old technique that some programmers use for planning is the flow chart which is a 
schematic of the logic and flow using symbols.  Other programmers use pseudo-code, 
which is a simplified form of programming language that is easy to translate into a real 
programming language.  Some gifted programmers can merely plan a program in their 
heads.  One method you might use is similar to pseudo code.  Merely write your 
comments in advance line-by-line, then write the code under the comment that describes 
the programming step.

Start by writing comment lines describing the program line-by-line. This is a kind of 
pseudo code. The description should be carefully thought out and ordered. After 
describing every line, follow the comment with the code to do the action described. Here 
is a small example where a file retrieval process is described.   What follows is a series of 
comments using '--' to describe the code to write.

 -- while not the end of the file
   -- input the next line into an object
   -- test the object to see if it is an atom
     -- if yes, then exit the while loop
     -- otherwise, append the object to a growing sequence
     -- when the end of file is reached, the entire file is now
     -- contained in a sequence in memory, and the file boundary
     -- was never breached.

Now, lets add the program lines to the comment lines. 
   
   object inp
   sequence ln
   
   ln = ""
   -- while not the end of the file
   while 1 do

      -- input the next line into an object
      inp = gets(fh1)

      -- test the object to see if it is an atom
      if atom(inp) -- end of file, if yes

         -- if yes, then exit the while loop



         exit  -- 
      end if

      -- otherwise, append the object to a growing sequence
      ln &= inp
   end while  
     -- when the end of file is reached, the entire file is now
     -- contained in a sequence in memory, and the file boundary
     -- was never breached



BlackJack Game (21.ex)

BlackJack or Twenty-One is a card game for gambling that is popular at lavish casinos. 
Consider rules of the game as an algorithm. An algorithm is a step-by-step method or 
process. Writing a program or algorithm is like describing a card game. 

To play BlackJack, you start with a standard deck of 52 playing cards and shuffle them. 
Among the players, there is a dealer, and one or more players. Then each player, 
including the dealer, gets a two-card hand initially. The dealer takes one card face down 
so that only the dealer knows what is beneath.  The other players have both cards 
revealed. 

Each hand is scored by scoring the cards; "Ten" and royalty get 10 points each, other 
cards are scored by their face value except Aces which may be scored as 11 or 1 
(optionally whichever is more advantageous). To win you come as close as possible to 21 
without going over. When 21 is exceeded, the player is "busted". The player with the 
highest score without going over 21 wins the "hand". If you receive twenty-one with only 
two cards, you shout "BlackJack" and win. 

After the first two cards, you may ask for more by taking your turn. If you are less than 
twenty-one, you can ask for more cards in order to try for twenty-one, however, if you go 
over twenty-one, you lose. 

To ask for another card, you say "hit me". To stay with what you currently have, you 
"stay". 



This program has elements that seem graphic because they use graphic-like characters 
from the ASCII code, but they are not true computer graphics. Luckily, the four suits of 
cards have their symbols in the ASCII code. 

The game program here, 21.ex, is a DOS program that allows a single challenger, you, 
play the dealer, the computer, at a true game of BlackJack. 

Here is the main code that ties it all together. 

  integer game_over, round_over, busted

  player_hand = repeat( 0,11 )     -- initialize with 
{0,0,0,0,0,0,0,0,0,0,0}
  dealer_hand = repeat( 0,11 )     -- initialize with 
{0,0,0,0,0,0,0,0,0,0,0}
  busted = FALSE
  game_over = FALSE
  cur_worth = 250
  clear_screen()
  cursor( NO_CURSOR )
  init_deck()
  next_card = 1
  full_deck = shuffle( full_deck )
  first_round = TRUE
  round_over = FALSE
  while 1 do                 -- 'do until' loops at least once
    game_over = get_bet()
    first_round = FALSE

    -- play til game over
    if not game_over then
      round_over = start_game()

      -- play this round til round over
      if not round_over then
        busted = player_play()
        if not busted then
          dealer_play()
        end if
      end if
      winner()
    end if
    if game_over then        -- exit *while* loop only if game over.
      exit
    end if
  end while

  -- exiting the above *while* loop ends the program
  cursor( UNDERLINE_CURSOR )

------------------------------------------------
-- Here's the plan...
------------------------------------------------



-- Create a brand new deck of cards
-- Shuffle the deck
-- start the game
-- take bets
-- the player plays
-- the dealer plays
-- find a winner
-- end or start over (a while loop runs the program however long it 
--takes)

------------------------------------------------
-- Again, but with more details
------------------------------------------------

-- Create a brand new deck of cards
    -- Declare a sequence var. called full_deck
    -- The 52 cards come from 4 suits times 13 ranks
    -- Therefore, we need two nested for..loops, one for suits, 
    --one for ranks
    -- we need a counter to count 52, call it card
   

-- Shuffle the deck
    -- a for..loop for 52 reps
    -- at each iteration, generate a random number 1-52
    -- swap the current element with element number *random*
    -- after 52, all cards are shuffled and unpredictable

-- Start the game
     -- Draw two cards each for two players
     -- Draw the screen graphics that look like a playing surface
     -- Use another routine for drawing each card
     -- This is text-based programming, so there are no graphics,
     -- only graphic-like characters in the ASCII character collection
     -- These represent card boundaries and card suits, a happy 

--coincidence
 
-- take bets
    -- explain the betting and prompt a bet
    -- if no choice is made, use a default bet amount

-- the player plays
     -- Rules differ for players and dealers
     -- prompt the player for Hit or Stay
           -- use another routine, hit_or_stay()     
     -- draw a new card and count the score
            -- you will need to move a pointer with move_pointer()
      -- Print updated statistics as you move next to the dealer's play

     -- if over 21 then stop player play

-- the dealer plays



   -- turn over the hidden card
   -- determine automatically if more cards are needed
   -- get more cards as needed
   -- draw cards to screen and keep score, display_card()
   -- if over 21 then busted
   -- Print updated statistics

-- find a winner
    -- count both hands
    -- win, lose, or draw?
    -- score accordingly and redistribute bets
    
-- end or start over
   -- call it yes_or_no()
   -- As in the beginning, prompt the user
   -- play or quit?

The program is divided into 17 subroutines plus the small amount of main code that 
weaves the threads together. 

bsort() -- this is a simple sort. 

card_convert() -- this is a scoring routine that is converts a card to a score for 
comparison; it is used 
in conjunction with the sort. 

count_hand() -- this is a scoring routine that scores the hand for comparison; this is how 
the winner is identified. 

dealer_play() -- this handles a single play; the rules for the dealer are slightly different 
from for other players. 

display_card() -- software logic chooses the cards, but this routine draws them to the 
screen. 

get_bet() -- this prompts the player to bet and records and calculates the bet. 

hit_or_stay() -- this prompts the player to declare, hit or stay. 

init_deck() -- a data structure that symbolizes a deck of cards is constructed. 

move_pointer() -- the game proceeds one step at a time and the pointer keeps track; it 
also detects when the deck is exhausted (to shuffle the used cards). 

noise_maker() -- various beeps and sound signals 

Pause() -- pauses the program and invites the user to press any key to proceed. 

player_play() -- this handles single play for players. 



shuffle() -- this is the opposite of a sort. Using a random number generator cards are 
swapped in pairs at random. After 52 swaps, they are thoroughly shuffled. 

start_game() -- this is called at the start of each game. It prepares the cards and the table. 

val() -- this transforms string numerals to numbers. 

winner() -- this determines if there is a winner or a draw and it identifies the winner. 

yes_no() -- this prompts the user to decide and enter yes or no. 



Employees.ex 

Variables take data from the external universe (input) and process it for useful 
information (output). The data is stored in the computer's memory and variable names 
help keep track of the data. 



Windows Programs 

The Windows operating system from Microsoft became popular in the 1990's and is now 
the most popular operating system in the world. The operating system of a computer is a 
collection of programs and utilities that manage everything on the computer. The 
operating system handles the disk actions that save data, and it sets the rules that 
programs must abide by. If your program breaks the rules of the operating system, it will 
be stopped. 

Windows is a Graphical User Interface (GUI) type of operating system that requires huge 
amounts of memory and which relies a great deal on the point-and-click technology of a 
desktop mouse. Windows is a multitasking operating system that can run many programs 
simultaneously, each in its own window. Windows is flexible, so you can still run older 
MSDOS programs, and you can run console programs that are not GUI programs. 

The most important thing about Windows from Microsoft is that it is the most widely 
used operating system, so programs for Windows are the most profitable. 

There are a number of ways to write Windows programs, but the most popular way in 
Euphoria is the easy way, using the Win32lib.ew library with the Judith Evans Integrated 
Development Environment. This is what we discuss in this section. This allows you to 
virtually draw the program you want on screen with drawing tools. The Win32lib.ew 
library handles much of the complexity for you, but you must still adjust your point of 
view to programs that are event driven. Up to now, most of your programs were 
procedural proceeding from the top down. Event driven programs may suddenly branch 
in any direction by the unexpected click of a mouse on the screen. 

Stop and think about what you see on screen when you are in Microsoft Windows. You 
see windows pop up in many sizes and many locations. Windows may have buttons, list 
boxes, text-entry boxes, scroll bars, icons, and other pictures. Each of these things is a 
control, and one control often belongs to another control. A window is a special control, 
often called a form, that may be a host to other controls (each a child control). A button 
on a Window is a control that belongs to another control, the window. 

Your Windows programs will need to describe each window (size, location, features, 
title) and each control found on each window. Windows sends and receives messages 
constantly. If the user clicks a button, Windows received the click event message related 
to a button (size, location, features, caption) that is found on a certain window (name, 
size, location, features). 

Even though Windows allows many operations at once, there is only one focus at any 



given time. The focus is on the last button clicked or the last selection by the user. If there 
are several windows on the screen, then the window with focus will move to the front 
unless there is a modal window open. A modal window is a window, like a message 
window, that dominates the focus until a decision is made and the modal window is 
clicked. A warning message box is this kind of window. 

The cursor is a pointer that is linked to the mouse, and it allows aiming and targeting with 
great accuracy. It shows where the mouse is pointing. 

The example program, simple.exw,  has enough code to launch a Windows program with 
this appearance.  It does not do much, as example programs frequently do not, but it 
shows the basic requirements of the most primitive Windows program written with the 
Win32lib.ew library that many Euphoria programmers prefer to use.

include Win32lib.ew
without warning

--------------------------------------------------------------------------------
--  Window Window1
constant Window1 = createEx( Window, "Simple", 0, Default, Default, 400, 300, 0)
constant EditText3 = createEx( EditText, "", Window1, 112, 52, 144, 20, 0, 0 )
constant PushButton4 = createEx( PushButton, "Exit", Window1, 132, 124, 88, 28, 0, 0 )
constant LText2 = createEx( LText, "Enter here", Window1, 48, 52, 60, 20, 0, 0 )
---------------------------------------------------------
--------------------------------------------------------------------------------
procedure PushButton4_onClick (integer self, integer event, sequence params)--params is ()
  closeWindow(Window1)
end procedure
setHandler( PushButton4, w32HClick, routine_id("PushButton4_onClick"))

WinMain( Window1,Normal )



Most of the code is devoted to creating the visible controls you see when the program 
runs.  The window has two controls, an edit box and a button.  The edit box has editing 
capabilities already supplied by the Windows operating system and all those wonderful 
programmers at Microsoft.  The button has added action.  It will end the program when 
pushed.  This added function is added by procedure PushButton4_onClick() and the 
setHandler() statement.  You could have programmed the button to launch bells and 
whistles if you wanted to, but since the caption says "Exit", it is a good idea to deliver 
"exit-ation", if that is a word.  When the button is pushed, a Windows event occurs. 
Nothing else will happen unless you write code that responds to the event, an event 
handler, if you will.  So setHandler sets up an event handler.  A procedure is needed to 
complete the set.  PushButton4_onClick() is connected to the handler by being specified 
in the third parameter of setHandler().  The procedure takes advantage of the fact that 
when you close with closeWindow() the program's main window, you end the program, 
those are the rules.

The next program, bitmor.exw, is a slight expansion on the previous one.  It adds some 
drop-down menu controls.

include Win32lib.ew
without warning

--------------------------------------------------------------------------------
--  Window Window1
constant Window1 = createEx( Window, "Bitmor", 0, Default, Default, 400, 300, 0, 0 )
constant mnuFile = createEx( Menu, "&File", Window1, 0, 1, 0, 0, 0, 0 )
constant mnuFileNew = createEx( MenuItem, "&New", mnuFile, 0, 2, 0, 0, 0, 0 )
constant mnuFileOpen = createEx( MenuItem, "&Open", mnuFile, 0, 3, 0, 0, 0, 0 )
constant mnuFileSave = createEx( MenuItem, "&Save", mnuFile, 0, 4, 0, 0, 0, 0 )
constant mnuFileSep1 = createEx( MenuItem, "-", mnuFile, 0, 5, 0, 0, 0, 0 )
constant mnuFileExit = createEx( MenuItem, "E&xit", mnuFile, 0, 6, 0, 0, 0, 0 )
constant mnuActivate = createEx( Menu, "&Activate", Window1, 0, 7, 0, 0, 0, 0 )
constant mnuActivateNow = createEx( MenuItem, "&Now", mnuActivate, 0, 8, 0, 0, 0, 0 )



constant mnuActivateLater = createEx( MenuItem, "&Later", mnuActivate, 0, 9, 0, 0, 0, 0 )
constant EditText3 = createEx( EditText, "", Window1, 112, 52, 144, 20, 0, 0 )
constant PushButton4 = createEx( PushButton, "Exit", Window1, 132, 124, 88, 28, 0, 0 )
constant LText2 = createEx( LText, "Enter here", Window1, 48, 52, 60, 20, 0, 0 )
---------------------------------------------------------
--------------------------------------------------------------------------------
procedure PushButton4_onClick (integer self, integer event, sequence params)--params is ()
  closeWindow(Window1)
end procedure
setHandler( PushButton4, w32HClick, routine_id("PushButton4_onClick"))
---------------------------------------------------------------------------
procedure mnuFileNew_onClick (integer self, integer event, sequence params)--params is ()
integer ans
  ans = message_box("You clicked New on File menu", "New clicked", MB_OK)
end procedure
setHandler( mnuFileNew, w32HClick, routine_id("mnuFileNew_onClick"))

WinMain( Window1,Normal )

Most of this code was written by another program, the Win32lib Interactive Development 
Environment.  Using this IDE with a mouse, you can draw the controls; you can drag and 
drop.  Then the IDE writes the code needed to create the program that works with those 
controls.  You may then add functions and other code manually as you like.  This will 
probably include more windows and controls and functions that respond to mouse-
activated events with those controls.  Some programmers refer to such an IDE as a 
"screen painter".

constant Window1 = createEx( Window, "Bitmor", 0, Default, Default, 400, 300, 0, 0 )

The createEx() function is widely used to create a control like a window; it returns the 
control's id number which is stored as a constant since it will not change once created (it 
may be willfully destroyed, but that is another story).  The name of the Window (control) 
is the name of the constant, Window1.  So a control resembles a variable in some ways. 
Window1 does not belong to any other controls, but it does belong to the Bitmor 
program, so Bitmor is a parameter in its proper place.  Other parameters set the size and 
location (a default in this case).

constant mnuFile = createEx( Menu, "&File", Window1, 0, 1, 0, 0, 0, 0 )

mnuFile is another control created with createEx() but it is not a window; it is a child 
control that belongs to Window1; it is a child of Window1.  That is shown by having 
Window1 as the third parameter.  We have now created a menu control which will need 
some children, menu items, which are themselves controls.

constant mnuFileNew = createEx( MenuItem, "&New", mnuFile, 0, 2, 0, 0, 
0, 0 )

mnuFileNew is another control created with createEx() but it is not a window or a 
menu; it is a menu item.  It is a child of mnuFile which is a child of Window1.  There are 
control types as there are data types.  The first parameter of createEx() calls for the 
control type, Window, Menu or MenuItem for instance.



When the program launches, it is given the focus.  It will keep the focus until the operator 
clicks some other control on the desktop.  When the window Window1 has the focus, you 
can click on its child controls.  You can enter text in the text box or click the exit button 
or select from the menu.  Whatever you select by clicking takes the focus.  If you later 
click on another program, Window1 and all of its children will lose the focus.  The cursor 
is no longer blinking invitingly from the text box; there is no longer an outline around the 
button that once had focus.  Can you see how important it is for Windows to keep track 
of the focus when multiple programs are running simultaneously?

Just as it was your job to name variables you created; it is your job to name controls; you 
may choose any name you like within reason, but be smart and sensible.  Window1 will 
do for the main window, but windowMain is another.  The name windowInput is 
probably better.  You should expect to have more than one window in a program.

There is a mnuFile that is a holder for menu items like mnuFileNew, mnuFileOpen, 
mnuFileSave, mnuFileExit.  The names were chosen to identify these as menu item 
controls that belong to the mnuFile control.  It is the property of menus that there must be 
a menu before there are menu items.  The menu mnuFile is merely a holder for the menu 
items, but it is a control in its own right, and it must be created before its children are 
created.  Think ahead of the structure and function of the controls so you can name them 
well.  Changing the name later means changing too much code.

Notice that we are using the so-called Win32lib method which will not work unless you 
have included the Win32lib.ew library at the top of your program.  This is the largest 
library yet available for Euphoria, and it is constantly maintained by various expert 
programmers.  There is a fabulous IDE available for free that makes Windows 
programming like painting on a surface.  If you have ever used Microsoft's Visual Basic 
you know how fun that can be.

NOTE:  If you would like to see an example of raw Windows development without  
Win32lib, look at the Windows examples in the DEMO subdirectory of the Euphoria 
installation.

Are there any advantages to raw, bare-bones programming in Windows?.  Yes.  There is 
less code bloat, and the programs load much faster.  Those C/C++ programmers who are 
used to programming for Windows may prefer the raw method, but it looks very daunting 
to beginners because so many lines are required for simple operations even though there 
is no extra bloat behind the scenes.  You will need a guide to programming for Windows 
if you hope to program this way.  Such a guide is a good idea anyway.  A guide will 
outline the system DLL's and what services they contain for your use.  You will need to 
master programming with DLL's to do that.  A guide will offer real examples to 
demonstrate difficult topics.

Remember, Windows is also a collection of data entry code that is already written for  
you for you to use.  Try to remember that when you think how complicated Windows 
programming is.  You are re-using much valuable code that belongs to the system itself. 



That is complicated code that you do not have to write yourself.

You are free to add your own  style to your Windows programs, but that is widely 
frowned upon in professional circles.  Microsoft has published guidelines and has 
demonstrated the guidelines in its own software that governs proportions and 
appearances.  Programs that use odd or oversized buttons with florescent colors look 
unprofessional.  The same is true of other extreme departures from normal appearance. 
Very large fonts and oddball structure are like an automobile manufacturer putting the 
brake pedal in some new and innovative location.  It may be fun and exciting, but it 
probably spells trouble for someone.

Depending on the type of program, however, you may improve the appearance with skin 
packages from third party suppliers.  These make for sleek or futuristic looking controls 
and formats.  If you are different just to be different, you will leave the impression with 
purchasers and fellow programmers that you are playing with kiddie code.  Of course that 
is just advice for those who hope to enter the profession.  Play around as you like, of 
course; you are bound to learn from experimentation.

Look at the window to Bitmor.exw.  Do you see "Enter here"?.  That is a caption that 
belongs to a label control, called an LText control.  What does a LText control do?  It 
offers a place to write captions, and its caption and location can change later in the 
program.  Most of the functional details of a Windows program are controls with 
properties to be set or to be changed as needed. 

To find out what properties each control has, you can check the Win32lib.ew 
documentation, but much of it is intuitive.  A LText control has little value other than a 
place to show text, called a caption property.  There is font and font size to consider. 
There is its location relative to the window's dimensions.  There is color (usually the 
same color as the background).  There is the size, length, width and height of the control. 
These details are properties to controls.  Most properties you must set yourself, usually 
when you create the control, but you can change properties later.  Some properties come 
with a default if you choose to let Windows choose for you.



Programming Multitasking

Multitasking is the ability to perform two or more actions at once.  The multitasking 
actions are actually sharing time with the processor invisibly.  It is a kind of round-robin 
that allows one action to advance a step or two then it stops briefly so another action can 
advance a step or two, and so on.  Because the the switching is very fast, the results are 
fluid like truly simultaneous operation should be.  Operating systems employ preemptive 
multitasking that dictates system-wide from moment to moment how resources are 
shared.  But programs usually use cooperative multitasking because it is better suited to 
planned algorithms.  Multitasking does not speed up any of the processes.  It has to slow 
each action a little in order to share the resources with other tasks or processes.

So why multitask?  Multitasking is not usually recommended, but it solves some 
problems very neatly.  In computer games, the appearance of simultaneous action is a 
necessity.  When database servers multitask (they usually do) they allow sharing, but 
short tasks still finish early while long tasks finish later as is expected.  This serves to 
keep the sharing invisible.  Those requesting brief service need not wait for the long tasks 
to finish first.  So, to reiterate, multitasking does not speed up the results, but it makes the 
sharing process itself invisible and normal.

There are times when the computer program waits for a response from the user.  During 
this waiting, other tasks could be completing behind the scenes.  This calls for time 
sharing multitasking where one task sits almost at idle waiting for a response.  The 
program loses none of its response time, essentially, but it uses its resources more 
efficiently.  When the user is roused to respond, you may redistribute the resources to 
match the request.

In a game with several players, actors or sprites all moving independently and 
unexpectedly, it is important to establish the appearance of natural simultaneous action 
without jitters or periodic stalls.  This calls for real time multitasking.

Multitasking in Euphoria is quite easy to do with  more than one strategy available. 
Sometimes the simplest strategy is perfectly effective.  The tutorial on multitasking by 
RDS found in the DEMO directory of Euphoria installation is brief and adequate when 
the time comes that you think you need multitasking.



Translating Euphoria to C

RDS supplies an Euphoria-to-C translator for Windows and another one for DOS in the 
original installation.  The translator will emit various files with C code that is compatible 
with popular compilers.  Several free compilers of high quality are available that will 
compile the translated files into binary executable files.  These files perform essentially 
like programs written in C.  This is significant since C programs have a reputation for 
efficiency, speed and power, but it is much harder to program in C.  The speed increase is 
insignificant in many programs, but it may increase the speed by 2 to 5 times in other 
situations.  Experimentation will tell.  Programs written in C often have pointer-related 
bugs, but Euphoria translations are probably free of such things.  These binary 
executables are the last word in hiding the original source code when that becomes a very 
serious consideration; the Euphoria binder will shroud the code, but there is room for 
doubt in minds of some developers.

Even without a C compilation, Euphoria can bind the source code into a *.exe file that is 
superficially indistinguishable from any other *.exe file.  Furthermore, bound (non-
translated) executables execute with impressive speed, more than thirty times faster than 
Python and Perl programs and considerably faster than Java programs.  It is merely 
academic that a bound executable is not a true binary executable.  Translation to C is 
rarely compelling simply on the basis of speed of execution, but it remains an impressive 
and valuable option available to all Euphoria programmers.  It lends great weight to the 
argument, "Why bother programming in C/C++?".

You must acquire and install one of the suggested free C packages in order to exploit the 
translator.  I suggest either the Boland 5.5 package or the Open Source Watcom package. 
These two products are unsurpassed in quality yet they are available free of charge.  On 
Linux and Unix, the C packages come with operating system.  This requirement is no 
small effort, but it is necessary for anyone who wants to translate to C on a regular basis.

Invoking the translator is like invoking the interpreter, but the translator emits C code and 
finishes with the message to launch a batch file by typing "emake".  Shortly (if 
everything is properly set up) there is a binary executable to execute; extraneous files are 
deleted at the end of the process.  The windows executables are rather large, but they can 
be compacted with a professional compactor.  See the RDS literature.

Modern computers are so fast that an extra boost in speed is not a high priority, but in the 
minds of many programmers, programs written in C offer the highest performance of any 
high-level language.  It is gratifying to know that if the program you are writing needs the 
utmost in speed, you have that option in the end.



Web Programming with CGI

The basic skill needed for any kind of world wide web programming is the language 
HTML.  HTML is not a general purpose programming language like Euphoria or C, but it 
is a page layout language for browsers.  The commands and syntax of HTML merely 
instruct a browser to print a page with a certain format with font selection, heading and 
centering or left/right justification.  It allows you to make links to other pages or other 
sites.  When you arrive at a web site, your browser loads a file with HTML code and 
creates the page on your computer as instructed by HTML.  From there, a two-way 
communication takes place.  If you click on a link to a new page, a new file of HTML 
code is loaded.  Fortunately, HTML is easy to learn and millions have learned it.  If you 
do not yet know HTML, you must learn it.  There are many free tutorials on line.

For years, the main technology for advancing simple web programming to powerful and 
professional web programming was Common Gateway Interface (CGI).  This is a fancy 
name for a simple concept.  CGI is a method to attach a web page to an executable 
program so they can communicate back and forth in a secure way.  This method allows 
visitors to your site to run one of your programs without putting yourself at risk of 
malicious tampering.

To the user, it simply seems that the web page is powerful and interactive.  CGI usually 
begins with an input text box that allows the user/visitor to input information, like a 
search box for instance.  Then there is a button to press to launch the process.  The web 
page with CGI capability will launch a program and send it input.  The program will 
parse the information into its basic components and respond by sending HTML code with 
its output so that the output is also a web page.

HTML becomes the GUI form, and your specially prepared programs add programming 
power to your web page.  They interact and cooperate so that the website acts like a 
powerful program.  Often CGI programs query databases and return the results in a web 
page.  Since CGI was introduced, other technologies like ASP and PHP were introduced, 
but they are simply variations on the same thing.

The first CGI programs, were written in Perl, and that has become a tradition, but CGI 
works with virtually any programming language.  Many famous and huge web sites 
operated for years relying essentially on CGI and Perl, so it is a proven technology. 
Euphoria can do what Perl does, but it executes over thirty times faster, so Euphoria is 
perfect for web programming.  Even binary executables like compiled C programs can do 
CGI with obvious advantages.

NOTE: Lately PHP is a very popular form of CGI, but Euphoria code executes 60 times 
faster than PHP even without a translation to C.  Extra speed means extra bandwidth 
which means extra traffic capacity without any annoying delays.



So a CGI program can do what you expect programs to do, but it contains parsing code 
for parsing the inputs string sent by the HTML page and its output must contain enough 
HTML to create a web page in response.  The gateway is the standard input controlled by 
the operating system.  Most service providers use either Linux or USB Unix for the 
operating system, and there are free versions of Euphoria for Linux and PSB Unix.  The 
code you write should require little if no change to swap operating systems.

It is fortunate that every skill you now learn as you learn Euphoria is a skill that will 
contribute to your ability to become a professional web programmer thanks to CGI.  For 
years, advanced web programming inferred CGI though there are now more technologies 
at your disposal, but CGI is not obsolete and no matter what advanced method you use, 
you will still need to understand HTML.

The RDS website uses CGI with Euphoria and Robert Craig has offered much of the code 
for your use.  You will find an excellent parsing routine that you may use, and other 
contributors have offered their CGI libraries for your use.

Some website providers offer a database engine like MySQL or ADS, so you can use 
your database technology for this.  However, the EDS database is quite adequate for most 
of the database requirements for most websites.

Consider a complicated site like an online bookseller.  You need to let the visitor search a 
database of book titles.  You need to let the visitor register, add his or her name to a 
customer database.  You must take orders and charge fees.  A web page in HTML is not 
powerful enough.  You need CGI for those extra features and functions.



The Software Business

Probably most professional programmers work for corporations who write programs in 
teams.  The language preference by corporate programming teams has tended go in 
waves of popularity.  Currently C#,  Java, VB.NET, C/C++ and  Delphi are very 
common.  Recital may be used in some cases.  COBOL programs are still in operation 
that need constant maintenance by COBOL programmers.  Not so long ago Visual Basic 
6.0 was very popular, but no so much any more.  Most such programmers should be 
proficient with relational database technology.  Corporations prefer five years of recent 
experience.  It is difficult to get back into the programming business if you have been out 
of the main for a year or two because the technology changes so fast.

There are small consulting firms that build systems of programs for small businesses that 
may use a variety technologies including FoxPro, Access, Visual Basic, Harbour or any 
of the languages previously mentioned.  They may be hired to customize a doctor's office 
or small retail operation.  They usually also offer web programming these days.  VBA 
allows programmers who know Visual Basic to program for customizing the programs 
that come with Microsoft Office, Excel, Access, Word , etc.  Linux may grow among 
small business, and products like OpenOffice may replace MS Office in such cases.

There will always be opportunity for freelance programmers, but being in business for 
yourself is always a risky business.  Programmers with excellent resumes, excellent 
education and excellent experience, may charge more than $100.00/hour, but they do not 
take as long to finish the job and they have a proven record.

As long as you have the skill and the time to develop a valuable program, you may sell 
your program on an entrepreneurial basis.  You may create a web site devoted to selling 
your program.  Any professional or avocational experience in your life may combine with 
your programming skill to create a unique product of value with a potential for sales.  As 
a self-taught programmer, other programmers will look upon you as an amateur, but as an 
entrepreneur that does not matter.

Many experienced professionals know more than one programming language.  Euphoria 
has attracted many programmers who once programmed in another language.  Many 
C/C++ programmers have switched gladly to Euphoria.  Visual Basic programmers are 
amazed that Euphoria is even easier to learn with greater capacity and performance plus 
portability.  The portability of Euphoria is not common and should not be 
underestimated.

The shareware business model may appeal to you.  According to this model, you 
distribute your program to others to use on a conditional basis so they can try before they 
buy.  You may alter or cripple your circulated program, and supply a perfect copy to 



those who "register" and buy, or you may not.  You may merely trust that many people 
will pay you what they owe you.  Be sure to have a registration database with the names 
and addresses of everyone who registers your product.  It may come as surprise to you 
that many programmers have found this method of selling software satisfactory.  If you 
go the shareware route, you are saving money on promotion, so you might consider 
lowering the price of purchase.  Carefully consider the asking price in any case.  You will 
be expected to supply support after the sale.  But the world wide web and commerce have 
made retail so easy that shareware is not as attractive to sellers as it once was.  You could 
have a web store instead.

There are only a few professional software companies known to me who are currently 
employing Euphoria programmers.  If you search with Monster.com or something similar 
for a job for a Euphoria programmer, you probably will not see many offers, or any offers 
at all.  I did not choose Euphoria because it is popular.  I chose it because I thought is was 
the greatest value in the application development business at this time, and because that it 
will probably remain so for some time to come.

Any profession or avocation is enhanced if the worker has extra skills like computer 
programming.  If you are a systems analyst, you will do your job better if you are fluent 
in some kind of "scripting" language that lets you automate your work.  If you are a 
lawyer or chemist, you could benefit from the customized programming you can do for 
yourself.  If you do any kind of office or clerical business, your ability to program is a big 
asset.  If you want to start your own business, writing your own customized software is 
the single most valuable skill of all.  A well designed practical program is like a reliable 
employee who works for free and lasts forever.


